
Types for Dynamic Languages

CS 801 PhD Seminar Report

Meetesh Kalpesh Mehta

23D0361

14th May, 2024

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Contents

Abstract . 1

1 Introduction 1
1.1 Related Works . 4
1.2 Type Declarations From Existing Types . 5
1.3 Data Declarations For Completely New Types . 7
1.4 Challenges in Describing Types for Dynamic Languages 7
1.5 Summary . 8

2 Type Inference and Their Limitations 9
2.1 Milner Type Polymorphism . 9

2.1.1 Modeling Types as a System of Linear Equations 9
2.1.2 Limitations of Milner’s Type Inference System 11

2.2 Summary . 13

3 Strength of Type Systems 14
3.1 Describing Types in TypeScript . 14
3.2 Pattern Matching . 15

3.2.1 Example 1 . 15
3.2.2 Example 2 . 16

3.3 Pattern Matching With Recursion . 17
3.4 Conditional Typing . 18
3.5 Summary . 19

4 Type Systems for Program Optimization 20
4.1 Typed Intermediate Language for ML . 20

4.1.1 Intensional Polymorphism . 21
4.1.2 Nearly Tag-Free Garbage Collection . 21

4.2 Confinement Types . 22
4.2.1 Type Rules . 22
4.2.2 Expression Typing Rules . 24

4.3 Summary . 25

5 Types In Dynamic Languages 26
5.1 A Case for Typed R . 26
5.2 A Case for Typing Dynamic Objects in Python 27

5.2.1 Class-Based Types . 27
5.2.2 Object-Based Types . 28
5.2.3 Results . 28

5.3 Summary . 28

6 Conclusion and Future Work 30

1

Abstract

Dynamic languages like Javascript and R are highly expressive and often allow programmers
to write code without worrying about describing various technical details. With features like
dynamic typing, the developer can focus on what values do and not think about how they work.
Traditionally, type systems were used to catch logical inconsistencies (usually using inference
rules) during compilation; however in dynamically typed languages this is not possible. Over
time, different kinds of type systems have been used to perform powerful optimizations and even
aid the garbage collector.

Designing a type system for dynamically typed languages like R and Javascript is hard,
not only because of their untyped nature but also because of loose(er) definitions of well-known
concepts like classes. An object may gain or lose fields during execution; does the object change
its type during execution or should there be a different way to model such types. Efforts on
statically inferring types in presence of such language features has proven futile. However, if we
forget the limitations that such dynamism causes and focus more on how it helps, we can look at
these languages differently. A React app is usually trivially understood by simply reading it top
to bottom; that is, there is an inherent structure to the code; React programmers understand
this structure of writing code while the compiler does not. A programmer reasons about the
program regarding states and higher-level abstractions, while a compiler breaks this coherence
when generating lower-level code for performing analysis.

The study in this report is mainly practical; it focuses on the previous works that have
used “richer” type systems to capture various properties of programs and compares them to
interesting modern examples. We talk about what “types” really mean to programmers of
different languages and then look at how one might classify them. We then look at classical
works in this area, how type inference works, and notable optimizations performed using them.
Finally, we study works that use types to model interesting problems and present our observations
on using type systems in modern dynamic languages.

Chapter 1

Introduction

Types were introduced to programming languages to catch common programming errors. In the
early days of programming, it was (and still is) highly desirable to be able to catch programming
errors as early as possible. Manipulation of memory directly, though granting more freedom,
turned out to be very error-prone. The introduction of type systems made significant strides,
providing users with a robust and reliable feedback loop where most common programmer errors
could be caught during compile time, Milner [12] proved that a correctly type-checked program
could not go wrong at runtime. In a more traditional static type system like C and C++, a
majority of type errors can be caught at compile time. In such languages, however, errors that
slip through the type checker may manifest as unexpected segmentation faults. On the other
side of the spectrum, languages like Java use a managed runtime to defer some of these checks
to the runtime. Here, invalid memory manipulation is not just hard but impossible by design.
Static type checking is very desirable for high performance, as statically ensuring a type allows
the compiler to get rid of it completely. In dynamic languages where certain type guarantees
cannot be ensured at static time, approaches that employ dynamic checks are more popular.

The notion of types, in the most general sense, is the restriction on the domain of values
that a specific variable may hold. Algorithmically, it is an invariant on the variable that holds
at every reachable state of the program.

Types in statically typed languages In statically typed languages like C and C++, all the
variables that hold values in the run-time are checked and verified statically at compilation time.
This allows the compiler to point out obvious errors that the programmer might have made,
such as storing a 64-bit value into a 32-bit variable (such errors are common in these languages).
Consider the following code snippet:

1 int a = 123456 + "Hello" + &main; // Typecheck ERROR: binop ...

Here, a is computed by adding an integer, string, and a pointer. The typechecker determines
that adding an integer to a pointer or a string is semantically invalid and throws a type error.

The typechecking system of C/C++ is not foolproof though; typecasts can easily bypass
such checks:

1 int a = 123456; // Some malicious virtual address

2 void (fun_ptr)(int) = (void ()(int))a;

3 fun_ptr (1);

Here, we cast the integer 123456 into a function pointer. This can allow the runtime to jump to
a random virtual addresses (most likely to end up in a segmentation fault).

In context of a statically typechecked object-oriented language like C++, variables of a
certain class may end up pointing to objects of a completely different class at run-time. If such
violations are not caught statically, the program can end up performing dangerous changes to
the memory. Consider the following code snippet:

1 class A {public: int a = 10; int b = 20;};

2 class B {public: uint64_t a = 0;};

1

3 int main() {

4 A *a = new A();

5 B b = new B();

6 std::cout << a->a << a->b << std::endl;

7 std::cout << b->a << std::endl;

8 a = ((A) b);

9 a->b = 20; a->a = 10; // Typecheck OK , Dynamic OK , UNSAFE

10 std::cout << b->a << std::endl;

11 return 0;

12 }

At Line 8 we cast an object of type B to an object of type A and make the variable a point to
it. Code in Line 9-11 works on the assumption that a is of type A while it is actually of type B.
Such code is prone to segmentation faults and random crashes.

Even though we know the types of the variables at compile type, finding out if all opera-
tions on these variables are valid or not cannot always be determined. In languages like C and
C++, the compiler assumes that the program is correct, and checking arbitrary type casts is
left completely to the programmer. Such code only ends up crashing when some illegal memory
is accessed. This leads to a situation where seasoned programmers can add relevant runtime
checks to ensure such properties, producing very fast and efficient code, while inexperienced
programmers end up with hard-to-debug code.

Types in statically typed languages with managed runtimes In contrast to C/C++,
statically typed languages like Java, which are designed to be run in managed runtimes1, provide
a guarantee that a variable cannot point to an object of an unrelated type. That is, a variable
of type τ is allowed to point to any object of type τ ′ if and only if τ ′ ⊑ τ . This is done with a
combination of static and dynamic checks. Let us consider the following code snippet:

1 class A {}

2 class B extends A {}

3 class C extends B {}

4

5 public class Main {

6 public static void main(String [] args) {

7 A obj1 = new A(); // Typecheck OK, dynamic OK

8 A obj2 = new B(); // Typecheck OK, dynamic OK

9 A obj3 = new C(); // Typecheck OK, dynamic OK

10 Random rand = new Random ();

11 int rand_int = rand.nextInt (10);

12 Object obj4 = new Object ();

13 if (rand_int > 5) {

14 obj4 = new Object ();

15 } else {

16 obj4 = new A();

17 }

18 A obj = (A)obj4; // Typecheck OK, dynamic?

19 System.out.println("obj is " + obj);

20 }

21 }

The above Java program compiles successfully. The three variables obj1, obj2, and obj3 (de-
clared at Lines 7 to 9) point to objects of type A, B, and C respectively. Here, the subtype
condition τ ′ ⊑ τ is satisfied and typechecks successfully. On Line 18, we see that obj condi-
tionally points to an object of type Object or A (declared at Line 14 and Line 16, respectively),
which means that the cast at Line 18 may conditionally be invalid. Languages like C++ let such
errors slip by, while the Java Virtual Machine ensures type safety here by inserting a runtime
guard right before A obj = (A)obj4 that prevents the program from continuing execution if
the typecast is semantically invalid. Such guards are known to slow down the run-time, but a
slowdown is acceptable if it provides such an important guarantee at run-time.

1Java Virtual Machine, the managed runtime in this case, interprets Java bytecode

2

Figure 1.1: TLA+ specification for solving the “die-hard” problem.

Typechecks in model checking Figure 1.1 showcases a solution for the “die-hard” problem
using TLA+ [10]. This problem involves a 3-gallon jug, a 5-gallon jug, and a water faucet, with
the goal of obtaining exactly 4 gallons of water. The solution is structured into three steps:
defining the initial state of the system (Init), specifying possible actions (Next), and adding
invariants for type safety and termination conditions.

The Init step initializes variables, setting both the small and big jugs to be initially empty.
The Next step defines possible actions, such as emptying or filling the jugs, and transferring water
between them. Additionally, the invariant TypeOK ensures type safety, preventing scenarios
like the 5-gallon jug holding 6 gallons of water. The invariant big ̸= 4 acts as the termination
condition. The TypeOK type check is particularly notable because it does not specify when it
should be performed; rather, it must hold true throughout any proposed solution. In languages
with strict typing, static analysis tools can enforce these invariants offline, while dynamically
typed languages may rely on runtime checks.

Types in dynamically typed languages In dynamically typed languages like JavaScript, R,
and Python, variables are not bound to hold values of a specific type throughout the program’s
execution. This flexibility allows variables to hold values of different types during run-time. For
instance, consider the following JavaScript code snippet:

1 let a = 10; // ’a’ is an integer

2 a = (a, b) => a < b; // ’a’ is a function

3 a = [1, 3, 2]. sort(a); // ’a’ is a list of integers

3

In this example, the type of variable a is first an integer (at Line 1), then it becomes a function
of two arguments (at Line 2) and finally holds an array of integers (at Line 3). Apart from being
one of these possible types at runtime, in languages like R, even the complete set of possible types
cannot be determined statically; this is because the environment is reified at runtime, meaning
we can never guarantee the reaching definitions for any variables statically. Any static analysis
must consider all the possible paths a program might take, which in dynamic languages, can
lead to imprecise analysis results, leaving little room for optimizations. In some cases types are
generalized implicitly without warning, which can lead to situations like this:

1 let a = (a, b) => a < b;

2 let b = (a, b) => a < b;

3 let c = a + b; // What does it even mean to add two functions?

Here, variables a and b are functions, and the type of c is unclear. One might expect an error at
runtime when trying to add two functions together, but this code runs successfully. The resulting
type of c is a string representing the concatenation of the two function bodies as follows:

1 (a, b) => a < b(a, b) => a < b

Here a function was silently coerced into a string, such implicit casts can become sources of
errors, both to the programmers and people implementing the language. When calling c as a
function, it results in the following error:

1 let d = c(1, 2);

2 // Uncaught TypeError: c is not a function

The dynamic nature of typing in languages like JavaScript underscores the importance of
understanding type conversions correctly during development. However, despite the challenges
that dynamically typed languages introduce, they contribute to code that is concise and easy to
read.

Statically compiling code for such languages does not typically yield significant perfor-
mance improvements over plain interpretation. This is because common optimizations cannot
be applied in the presence of such dynamism. As a result, the burden of compiling fast code
shifts to the runtime environment. These languages often utilize Virtual Machines (VMs) along
with Just-In-Time (JIT) compilation techniques. These techniques specialize hot parts of the
code based on profiling and speculation, optimizing performance dynamically during runtime
execution.

1.1 Related Works

Types have been around for a long time; typed lambda calculus was first popularized by [12].
This work also introduced the notion of type correctness, which states that “a well-typed program
cannot go wrong”. Over the years, types have also been used for optimization. One of the first
works that discusses the possibilities of optimizing languages supporting polymorphism is [16].
Most of the optimizations discussed in this work, in some form, appear as a part of the modern
Java compiler. It was understood long ago that statically inferring precise types is complicated for
dynamic languages. SELF95 [7] uses runtime profiling and performs speculative optimizations
to speed up the program. Techniques for dynamic deoptimization [8] solved the problem of
recovering from failed speculations by using frame states. In recent times, many works on The R
programming language made use of these ideas and introduced novel optimizations [6], [5], [4].

In the last 25 years, object-oriented programming has emerged as one of the most powerful
abstractions; this was made possible partly due to the powerful dynamic optimizations provided
by the JVM, which can profile the runtime and optimize code on the fly. Expressing objects
as types proved to be very natural, Most real-world tasks can be expressed in terms of objects
that interact with each other in well-defined ways. A recent work pointed out that even though
Java classes are popular, they do not capture a fundamental property of what they define as the
“state”; they named this concept “typestate” [2] of an object. For instance, a file may be in two
states, either open or closed. When a file is closed, the only action/method associated with it is
opening the file; any other action is semantically invalid. Modeling the state of a file as being
open or closed using types allows the type system to detect semantic bugs in the program where
a particular piece of code is trying to write to a closed file.

4

Describing types for dynamic languages has been studied empirically in recent times. As
an instance, one recent work [17] on the R programming language collects function signatures by
running and profiling a large corpus of library code, which is then verified by a proposed type sys-
tem for R. On the other hand, recent work on Python [15] discusses how types of objects should
be described. They look at objects through the lens of dynamism, namely constructor-based dy-
namism and object evolution. A popular type system developed for JavaScript is TypeScript [18];
it uses a compiler to typecheck the programs statically and then can be transpiled to JavaScript.

1.2 Type Declarations From Existing Types

In Haskell, types that derive from existing types are declared using the type keyword. For
instance, in Haskell, there is really no such type as a String; it is simply a synonym to a list of
characters defined as follows:

1 // Type String in Haskell

2 type String = [Char]

3

4 // One might view it as a typedef in C.

5 typedef char* string;

We are also allowed to declare types in terms of other declared types. For instance the
following type declaration of Distance is defined in terms of Point.

1 // Type Distance described in terms of Type Point in Haskell

2 type Point = (Int ,Int)

3 type Distance = Point -> Point -> Int

4

5 // One might view it as the following in C (this is not entire

true as we will see later)

6 typedef struct Point {

7 int a, b;

8 } Point;

9 typedef int(* Distance)(Point , Point);

Even though the type mechanisms of Haskell and C/C++ seem to be very similar in
nature, there are a few stark differences. The first limitation of the type keyword is the inability
to declare recursive types. Though it is popularly believed that C and C++ do not support
recursive types, this is not entirely true. Over the years, C++ has gained support for Containers
of Incomplete Types. This allows C++ to declare recursive data structures of the following form:

1 // Invalid in Haskell

2 type Tree = (Int , [Tree])

3

4 // Valid in C++

5 struct Tree {

6 int data;

7 std::vector <Tree > next;

8 };

9

10 // "Not" a recursive type in C, but has similar functionality

11 struct Tree {

12 int data;

13 Tree * next;

14 };

We see that the Haskell type system imposes some strict limitations on the types declared
using type. This is by design as this allows for a natural way to describe structural equivalence
in types. Let us consider the following code snippet:

1 // Type A and Type B in Haskell are synonyms

2 type A = (Int ,Int)

3 type B = (Int ,Int)

5

4

5 f :: A -> B

6 f (a,b) = (b,a)

7

8 g :: A -> Int

9 g (a,b) = a + b

10

11 // Executing function f and g

12 g (f (1,2))

In the above example, the function f takes a parameter of type A and returns a value of type B. In
Haskell, A and B are exactly the same thing; they can be used interchangably. This functionality
can be achieved in C using typedefs, while structures of the same form are not naturally the
same. For example, the following structs cannot be used interchangably:

1 typedef struct A {

2 int a, b;

3 } A;

4

5 typedef struct B {

6 int a, b;

7 } B;

8

9 B f(A a) { B res; res.a = a.b; res.b = a.a; return res; }

10 int g(A a) { return a.a + a.b; }

11

12 int main() {

13 A a;

14 a.a = 1;

15 a.b = 2;

16 g(f(a)); // There is an error here , invalid argument type

17 return 0;

18 }

Instead of extracting out the types and declaring typedefs, a C programmer might proceed to
cast struct of type A into type B using expressions like g((A)f(a)), which is bad practice. This
shows a philosophical difference of how types are supposed to used in these two languages; Both
are capable of representing the same ideas but both promote different kind of reasoning about
the programs.

Finally, similar to generics in C++, we can pass parameters to types in Haskell.

1 // Parameterized type in Haskell

2 type Together a b = (a, b)

3

4 // C++ Equivalent using generics , not exactly semantically

equivalent!

5 template <class T, class U>

6 class Together {

7 T a;

8 U b;

9 };

The reason for why Haskell types declared using type are treated as synonyms while types
declared using struct in C/C++ is the concept of “constructor”. In case of structs and classes,
the concept of constructor is implicit, whereas in case of Haskell it is explicit. This means that
when we want to associate values with a specific unique tag (i.e. a classname, structure name,
etc) we use the “data” mechanism in Haskell. We see this mechanism in the following section.

6

(Int, Int)

type A = (Int,Int) type B = (Int,Int)

(C1, Int, Int)

data A = C1 Int Int data B = C2 Int Int

(C1, Int, Int)

Figure 1.2: Constructors in Haskell.

1.3 Data Declarations For Completely New Types

Sometimes it may be desirable to introduce completely new types to the language altogether; in
Haskell this is done using the datamechanism. Figure 1.2 shows how datamaps values differently
than type. We can see how the concept of constructor was implicit in case of structures in C
and C++ 2; in Haskell this property is made explicit.

Constructors also allow Haskell programs to support intensional polymorphism (we want
to invoke different functionality depending on the type of the argument passed to a function)
whenever desired; this is popularly implemented using pattern matching. Let us consider the
following code snippet:

1 data Shape = Circle Float | Cylinder Float Float

2

3 area :: Shape -> Float

4 area (Circle r) = pi * r * r

5 area (Cylinder r h) = pi * r * r * h

Here the type Shape can be made using two kinds of “constructors”, namely Circle and
Cylinder. Compared to normal functions, the constructor functions simply exist to contain
pieces of data. The constructor can then be used for pattern matching (as seen in the area
function). The area function, takes an object of type Shape as input and returns a Float, here
the constructor is used for pattern matching. The following code snippet shows how this can be
viewed in the sense of imperative languages like C/C++/Java.

1 area :: Shape → Float

2

3 area □ = if □ instanceof Circle

4 then return area ’ ((Circle)□)

5 elif □ instanceof Cylinder

6 then return area ’’ ((Cylinder)□)

7 else Throw Error

8

9 area ’ (Circle □) = pi * □ * □
10

11 area ’’ (Cylinder □ □’) = pi * □ * □ * □’

The data mechanism also supports recursive types to be defined; consider the following
code snippet.

1 data Tree = Node Int [Tree]

1.4 Challenges in Describing Types for Dynamic Languages

Most of the concepts discussed in the previous two sections are very intuitive. The underlying
assumption with types is that shapes are mostly fixed and are not subject to change during
run-time. In case of languages like R, Javascript and Python this may not necessarily be true.

2C++ uses name equivalence for structures.

7

Types in dynamically typed languages tend to be even more nuanced, for instance consider the
following code example in Python:

1 class A:

2 def __init__(self ,title ,width):

3 self.title = title

4 self.width = width

5 if self.width is not None:

6 self.height = self.width

7

8 def setheight(self ,height):

9 self.height = height

10

11 panel1 = Panel(Text() ,42) # Object with three fields

12 panel2 = Panel("Example Table",None) # Object with two fields

13 panel2.width = 5 # modification

14 panel2.setHeight (42) # extension

Traditionally, there is an assumption that objects of the same class will have the same
shape, this notion does not hold true in dynamic languages such as Python and JavaScript.
At Line 11 and Line 12, two distinct objects are instantiated. The first object contains three
fields, namely title, width, and height, whereas the second object possesses only two fields
(height is missing). Line 13 modifies the width field of the second object, converting its type
from NoneType to Int. Line 14 then introduces a new field to the second object. As the program
progresses we see that not only the types of the fields may change but also its shape. Figure 1.3
demonstrates the progression of objects referenced by panel1 and panel2. Efforts on modeling
type systems where such dynamism is prevalent is an active area of research.

Panel

title: "Some Text"

width: 42

height: 42

Panel

title: "Example Table"

width: None

Panel

title: "Example Table"

width: 5

Panel

title: "Example Table"

width: 5

height: 42

panel1 panel2

Object Evolution

Figure 1.3: Object Evolution in python.

1.5 Summary

This chapter discussed the concept of types in various different contexts. We learnt that types
in languages are a compile time property in languages like C and C++, whereas their meaning
is mixed in managed languages like Java. In model checkers they are used as invariants on the
program variables ensuring that they do not contain invalid values at any reachable program
state. Section 1.1 discussed the related works when it comes to modeling, describing and using
type systems. Section 1.2 discussed the way Haskell allows creation of types and compares them
to languages like C and C++. Section 1.3 discussed how new primitives are added to Haskell and
the concept of constructors. Section 1.4 discussed the challenges in modeling types in dynamically
typed languages where types of objects can change and even evolve over time.

8

Chapter 2

Type Inference and Their
Limitations

Building an intuition for types is easy; in a lot of ways, they are analogous to sets in math.
Some specialized programming languages like Agda [1] provide sets as fundamental quantities to
reason with, but reasoning about computing systems with sets alone is not always convenient.
So, programming languages allow users to define restrictions on arbitrary sets, known as “types”.
Approaches like model checking, such as TLA+ [10], can generally enforce invariants of the form
“this never contains”, “this is exactly”, and “one of the following” on the variables at each step.
The ability to add these invariants is invaluable to find errors in the proposed logic.

This chapter answers the following questions: How is type inference done? What are its
limitations? Are some type systems stronger than others?

2.1 Milner Type Polymorphism

Polymorphism allows users to define functions that work with various types, similar to many
primitive operations in math. For instance, addition in math polymorphically changes its mean-
ing when we work with integers vs. when we work with matrices. Such polymorphism is not new
in programming languages; however, a formal type discipline was lacking. Milner’s work [12]
explores the fundamental concepts and practical implications of type polymorphism within the
context of programming languages.

2.1.1 Modeling Types as a System of Linear Equations

Let us consider the following code example that defines the map function.

1 letrec map f m = if (null (m)) then nil

2 else cons (f (car(m))) (map f cdr(m))

The function map takes a function f and a list m and applies the function f to each element
of the list m to obtain a new list. The first argument is a function that takes elements of type
α and produces a result of type β, and the second argument is a list of type α. The result of
applying the function map on these two arguments produces a list of type β. Generally, this is
represented as follows:

1 typeof(map) = (α → β) → α list → β list

The identification of such types for functions can be done by modeling them as linear
equations. Let us first consider the free identifiers1 in the function body of map. We will consider
the following generic types for these free identifiers:

1 null : α list → bool
2 nil : α list

1These are identifiers in the function body that are not bound by any argument of the current or parent
function

9

3 car : α list → α
4 cdr : α list → α list
5 cons : α → α list → α list

For identifiers that occur once we denote the types for each identifier id using σid along
with type variables τ1, ...τ5 (note that within a type instantiation we use the same type variable
for the different instantiations).

1 σnull = τ1 list → bool
2 σnil = τ2 list
3 σcar = τ3 list → τ3
4 σcdr = τ4 list → τ4 list
5 σcons = τ5 → τ5 list → τ5 list

For remaining identifiers, we ensure the same type for each identifier is used; this lets us
tie these type equations together. Also, the equations must be satisfied for some arbitrary types
ρ1, ρ2...

1 σmap = σf → σm → ρ1
2 σnull = σm → bool
3 σcar = σm → ρ2
4 σcdr = σm → ρ3
5 σf = ρ2 → ρ4
6 σmap = σf → ρ3 → ρ5
7 σcons = ρ4 → ρ5 → ρ6
8 ρ1 = σnil = ρ6

We now solve this set of linear equations using Robinsons Unification Algorithm [14]. Let
σt = (α → β) and σm = α list. Each step of unification is depicted in a different color to drive
the intuitive understanding of how the algorithm proceeds.

1 σmap = (α → β) → α list → ρ1
2 σnull = α list → bool
3 σcar = α list → α
4 σcdr = α list → ρ3
5 σf = (α → β)
6 σmap = (α → β) → ρ3 → ρ5
7 σcons = β → ρ5 → ρ6
8 ρ1 = σnil = ρ6

1 σmap = (α → β) → α list → ρ1
2 σnull = α list → bool
3 σcar = α list → α
4 σcdr = α list → α list
5 σf = (α → β)
6 σmap = (α → β) → α list → ρ5
7 σcons = β → ρ5 → ρ6
8 ρ1 = σnil = ρ6

1 σmap = (α → β) → α list → ρ1
2 σnull = α list → bool
3 σcar = α list → α
4 σcdr = α list → α list
5 σf = (α → β)
6 σmap = (α → β) → α list → β list
7 σcons = β → β list → β list
8 ρ1 = σnil = β list

1 σmap = (α → β) → α list → β list

Such unification-based type-checking is very popular in modern programming languages,
wherein most compilers implement variations of this algorithm.

10

Example 1: Inference in C++

C++ is a well-known statically typed language supporting advanced features such as generics and
templates. Some time ago, the auto keyword was introduced to the language based on popular
demand. This feature allows programmers to skip providing type declarations for the variables,
and the compiler automatically determines the type during compilation. Let us consider the
following C++ code snippet.

1 std::vector <int > foo(int a) {

2 auto vec;

3 return vec;

4 }

If we used the same tools of modeling we studied earlier, we could model the problem of
inference of the type of vec as follows.

1 σfoo = τ1 → τ2
2 σvec = τ3
3 σret = σfoo = σvec

Let us solve the equations for τ3 by substuting the known types of foo.

1 σfoo = σa → σret

2 σvec = τ3
3 σret = σfoo = σvec

1 σfoo = int → int vector
2 σvec = int vector
3 σret = σfoo = σvec

Though this looks straightforward, the C++ compiler fails such inference. The specific
rule in the C++ specification that disallows such inference is:

...the type of the variable that is being declared will be automatically deduced from its
initializer...

Here, we see that the variable vec has no initializer; under such scenarios, the C++
compiler fails to make type inference, even though it may seem like an arbitrary limitation in
this case.

Example 2: Inference in TypeScript

If we rewrite the previous example in TypeScript we find that this works without any problems.

1 function foo(a: number): number [] {

2 let vec;

3 return vec;

4 }

5 let v: number [] = foo();

2.1.2 Limitations of Milner’s Type Inference System

At first look, type inference based on unification is a natural way to infer types of variables and
perform type checking. However, there are some fundamental limitations to approaching such
inference. The primary consideration is how to model generic types; in the previous example, it
was natural to assume that two instances of the same generic type will behave the same, but this
is not always true. Consider the following example of applying the previously defined function
map(see Section 2.1.1) being applied twice, here tokl is a list of tokens.

1 map(sqroot , map(length , tokl))

2

3 σmap = (tok → int) → tok list → int list
4 σmap = (int → real) → int list → real list

11

In this example we see that there are two different ways to infer the type of the function map.
Handling this situation is difficult, and exposes some limitations of the previously presented
approach.

To see what options we have when we encounter such limitations let us consider another
example, the function reversepair reverses the elements of the tuple and returns the new tuple.

1 let reversepair (x, y) = (reverse(x),reverse(y))

Modeling the same using unification gives us the following; here the function reverse has
the signature α list → α list.

1 σreversepair = (τ1, τ2) → τ3
2 σreverse = τ3 → τ4
3 σreverse = τ5 → τ6
4 σreversepair = (τ3, τ5)

1 σreversepair = (σx, σy) → τ3
2 σreverse = σx → τ4
3 σreverse = σy → τ6
4 σreversepair = (σx, σy)

Unifying with argument supplied as (α list, β list):

1 σreversepair = (α list, β list) → τ3
2 σreverse = α list → τ4
3 σreverse = β list → τ6
4 σreversepair = (α list, β list)

If we look at the result of unification, we run into the following problem. Here we are
forced to unify the two different definitions for σreverse.

1 σreversepair = (α list, β list) → τ3
2 σreverse = α list → α list
3 σreverse = β list → β list
4 σreversepair = (α list, β list)

As a result of the previous unification we infer α == β.

1 σreversepair = (α list, α list) → (α list, α list)
2 σreverse = α list → α list
3 σreversepair = (α list, α list)

What does this mean? Firstly it means that for reversepair function to be typechecked
correctly, it must only accept tuples where the type of both of its elements is same. Some
approaches to handle such situations are rather straighforward. We could create a separate copy
of the method reverse on each instance as follows.

1 σreversepair = (α list, β list) → (α list, β list)
2 σreversea = α list → α list
3 σreverseb = β list → β list
4 σreversepair = (α list, α list)

Another idea would be to instantiate type variables; Milner’s work terms them as generic.
However, not all generic types can instantiated, only the types that do not appear as part of any
enclosing formal parameters are allowed to be instantiated. In practice, this is equivalent to the
previously described solution. However, the updated definition of generics is also not complete
and runs into complications. For example the following function that does the same thing as the
previous example cannot be well typed using this system:

1 let Func f (a,b) = (f(a), f(b))

Here we are not allowed to instantiate the type variables for f, which means we end up
restricting the domain of f in func.

12

An assumption about conditionals It is worth noting that all the previous examples pre-
sented naturally assumed that both the branches of a conditional return values of the same type.
This is by design for many languages, but not always true. Some languages like Javascript allow
different types to be returned from different branches. The modeling of such languages requires
the concept of conditional/dependent types (discussed in the upcoming chapters) which allows
such behaviour to be typechecked.

2.2 Summary

This chapter presented the concepts of type inference presented by Milner. Section 2.1.1 pre-
sented the way programs can be modeled as linear equations and solved using Robinson’s Uni-
fication Algorithm. Section 2.1.1 and Section 2.1.1 gave some examples on how inference may
work differently in different modern languages. Section 2.1.2 discussed the limitations of Milner’s
system and suggested how they can be overcome.

13

Chapter 3

Strength of Type Systems

Type checking involves modeling the program using type variables and then performing unifica-
tion. If the unification is successful, we say that the type checker was successful; otherwise, we
throw a type error. Naturally, the question emerges: are all types of systems of all languages the
same? In the last chapter, we encountered a seemingly trivial type inference limitation in C++
(see Section 2.1.1) and found that it was not a limitation in case of TypeScript [18]. This first
part of this chapter shows how types are described in TypeScript and the second part describes
how complex properties can be type checked.

3.1 Describing Types in TypeScript

Similar to different ways types are described in Haskell (see Section 1.2 and Section 1.3), we will
quickly look at how types get described in TypeScript. Let us consider the following TypeScript
code snippet.

1 // 1. Using values in types

2 type Music = "Eminem" | "LinkinPark";

3 // Domain of Music = { "Eminem", "LinkinPark" }

4

5 // 2. Using values as types

6 type Mee = { name: "Meetesh", address: "IITB" };

7 type Yoo = [1, 2, 3];

8 // type Mee = {

9 // name: "Meetesh ";

10 // address: "IITB";

11 // }

12 //

13 // type Yoo = [1, 2, 3]

14

15 // 3. Infer types from values

16 const foo = { bar: "baz", bam : { a: 12, b: {}} };

17 type Foo = typeof foo;

18 // type Foo = {

19 // bar: string;

20 // bam: {

21 // a: number;

22 // b: {};

23 // };

24 // }

The only notable difference is the lack of keyword data; instead, type keyword suf-
fices when declaring completely new types. In the first case, Music is a type with the domain
{“Eminem′′, “LinkinPark′′}. The domain of the second case is the entire object (TypeScript
allows complex values to be types); when we make use of types Mee and Yoo, it will unify every
single value. The third case is similar to the second one, but the typeof operator allows us to

14

infer types in a more general sense. To get a clearer sense of what these complex types look like
let us consider more examples:

1 // Example 1

2 type Mee = { name: "Meetesh", address: "IITB" };

3 let a : Mee = { name: "Meetesh", address: "IITM" }; // TypeCheck

ERROR

4

5 // Example 2

6 let a : Mee = { } as Mee // TypeCheck OK , bypass the TypeChecker

7

8 // Example 3

9 const foo = {

10 bar: {

11 a: 12,

12 b: { name: "Meetesh", address: "IITB" }

13 }

14 };

15 type b = typeof foo

16 // type b = {

17 // bar: string;

18 // bam: {

19 // a: number;

20 // b: {

21 // name: string;

22 // address: string;

23 // };

24 // };

25 // }

26

27 // Example 4

28 const baz = { bar : { a: 12, b: a} };

29 type c = typeof baz

30

31 // type c = {

32 // bar: {

33 // a: number;

34 // b: Mee; // Notice the difference here

35 // };

36 // }

The first example shows how values get matched when complex types are checked in
TypeScript; here, "IITM" cannot be matched to "IITB". However, in the second example we see
that we can bypass the typecheck by using as. In the third example, we see a complex type being
inferred from a value using typeof keyword. In the fourth example, we see that the resultant
type c finds infers the value of bar.b as Mee. This is because we explicitly made use of an object
of type Mee i.e. a.

3.2 Pattern Matching

Pattern matching in principle is similar to the one presented in Chapter 1.3. It allows us to
compare a value against a specific structure and reason about them. An interesting feature of
TypeScript is the support for pattern matching and recursion when describing types. Let us
consider the following examples.

3.2.1 Example 1

Let us consider the following TypeScript example that makes use of pattern matching to infer
the type Foo1.

1 type ExtractFoo <T> =

15

2 T extends { foo: infer U }

3 ? U

4 : T extends { bar: { foo: infer U } }

5 ? U

6 : never;

7

8 const withFoo = { foo: new Date() };

9 type Foo1 = ExtractFoo <typeof withFoo >;

First, the object withFoo declared at Line 8 gets evaluated:

1 const withFoo = { foo: new Date() };

2 // withFoo = {

3 // foo: [Date Object]

4 // }

Second, the typeof operator is being used to infer the type of withFoo, which gives us
the following:

1 // const withFoo: {

2 // foo: Date;

3 // }

Third, the inferred type is given to the ExtractFoo function. The following snippets show
the evaluation process, step-by-step.

1 ExtractFoo { foo: Date } =

2 if { foo: Date } extends { foo: □ }

3 return □
4 if { foo: Date } extends { bar: { foo: □’ } }

5 return □’

6 else

7 unreachable

1 ExtractFoo { foo: Date } =

2 if { foo: Date } extends { foo: Date }

3 return Date
4 if { foo: Date } extends { bar: { foo: □’ } }

5 return □’

6 else

7 unreachable

1 ExtractFoo { foo: Date } = Date

The infer keyword is used to match arbitrary patterns; they can be used to perform
selections such as first element of a list, the remaining elements of a list, etc.

3.2.2 Example 2

1 type InferT <T> =

2 T extends readOnly [... infer U]

3 ? U

4 : T;

Here InferT gets rid of the readOnly property of a type and returns the listof types U.

1 type InferT (readonly [int , string , float]) =

2 (readonly [int , string , float]) extends readOnly [□]

3 ? □
4 : (readonly [int , string , float]);

16

1 type InferT (readonly [int , string , float]) =

2 (readonly [int , string , float]) extends readOnly [

listof [int, string, float]]
3 ? listof [int, string, float]
4 : (readonly [int , string , float]);

1 type InferT (readonly [int , string , float]) = listof [int, string, float]

3.3 Pattern Matching With Recursion

A type system’s strength is indirectly tested by how many valid behaviours it can typecheck
successfully. Just being able to typecheck is not sufficient though; we want to be as precise as
possible. Precise types are instrumental to further optimizations down the line. For instance,
consider a varidaic 1 rev function in javascript with the following signature:

1 rev :: argList(α) → [α]
2

3 let a = [1,"Hello", 1.1] // What is the typeof a here?

4 let b = rev(a).first() // we want to infer b as ’float’

The rev function takes a variable number of arguments as input and returns a list. We pass
the list a to this function. Here the type of a is [(Int | String | Float)], meaning each
element of the array is one of these three types. If we use a simplistic type definition for rev ::
argList(α) → α (which says that it is a function that can take a list of arguments of type α and
return a list of type α) the type of b will be inferred as (Int | String | Float) . In essence
we want to describe what the rev function does to the type system more precisely. We do this
in two steps, first we describe how inference of type of a can be improved, next we look at how
we can model the type of rev such that the type inferred for b is precise.

For a, we can preserve the order of these types by using const as follows:

1 let a = [1,"Hello", 1.1] as const

Here the types for a are correctly distinguished, [Int, String, Float]. Now, we want
to model a more precise type for rev. Let’s say somewhere in our language’s standard library
we have a rev function that is implemented as follows:

1 // Code somewhere

2 function rev (... args) {

3 return args.reverse ();

4 }

This function takes a list of arguments and reverses the arguments. This is basically a
reverse function, on the arguments.

Now our goal is to typecheck our program which makes use of this function, we would like
to able to describe to our type checker the following predicate.

Any types provided to the function rev in order τ1, τ2, τ3, .., τn will give back τn, τn−1, .., τ1.

More formally, we want to type inference of rev to be the following:

1 rev :: (α1 × α2 × α3...αn) → [αn, αn−1, αn−1...α1]

We never come across the need for this kind of a typecheck in languages like Java and
C++, because they simply disallow non-homogenous types of lists. That does not mean we
cannot store such objects; it simply means that the type system will generalize all objects being
stored into the most generic supported type. In case of Java this would be the Object class.

1 type Reverse <T extends any[]> =

2 T extends [infer T1, ... infer Ts]

3 ? [... Reverse <Ts>, T1]

4 : T;

1Ability to take variable number of arguments.

17

5

6 declare function rev <T extends any [] >(...ts: T): Reverse <T>;

7 const isReverse = rev(1, true , ’hero’);

8 % [string , boolean , number]

9

10 const isReverse1 = rev (...[1 , true , ’hero’] as const);

11 % [’hero’, true , 1]

In the above code snippet we see the parameterized type Reverse, which takes as input
one parameter of type array and pattern matches its body. We see that the logic for pattern
matching [infer T1, ...infer Ts] is similar to the pattern matching found in Haskell where
we pattern match against (x:xs). We can recursively describe the definition of Reverse in terms
of itself; the implementation is very similar to the reverse function that can be written in Haskell
as follows.

1 reverse :: [a] -> [a]

2 reverse [] = []

3 reverse (x:xs) = reverse xs ++ [x]

It is very interesting to see that a program written in Haskell to reverse a list, with minor
modifications can be used for static typechecking of the same logic for a Javascript program. One
is a strongly typed languge with room for very little dynamism and the other is a dynamically
typed language with no support for static type checking.

3.4 Conditional Typing

When there is a possibility of narrowing the type of a variable, we would like to keep the most
precise type around. Let us consider the following example in TypeScript. Say we have an API
call, that based on some condition returns one of two results.

1 type Basic = {

2 user: string;

3 url: string;

4 }

5

6 type Extra = {

7 user: string;

8 url: string;

9 extra: {

10 last_online: string;

11 hours_online: number;

12 };

13 }

14

15 function apiCall(extra: boolean): Basic | Extra {

16 if (extra) {

17 return new Extra ()

18 } else {

19 return new Basic ()

20 }

21 }

22

23 const val1 = apiCall(true); // We want a precise type here!

24 console.log("Online for : " + val1.extra.hours_online);

In the given code snippet, the current inference of val1 (at Line 23) gives us the result (Basic |

Extra). In the following print statement (at Line 24) we are dereferening val1 using the fields
val1.extra.hours online. Due to the imprecise type inferred for val1 we cannot be sure if
this dereference will always succeed, it may fail at runtime. Due to this imprecision we end up
adding runtime checks that ensure the fields actually exist during the execution.

18

Conditional types can allow the typesystem to narrow the types of values based on con-
ditionals. The resultant types are allowed to be derive from existing types as-well-as values
(sometimes termed as being “dependent” or “dependently typed”). Consider the following up-
dated code snippet making use of conditional types in TypeScript:

1 type CondT <T extends boolean > =

2 T extends true ?

3 Extra

4 : Basic;

5

6 function apiCall <E extends boolean >(extra: E): CondT <E>;

7

8 function apiCall(extra: boolean): CondT <typeof extra > {

9 if (extra) {

10 return new Extra () : CondT <typeof extra >

11 } else {

12 return new Basic () : CondT~<typeof extra >

13 }

14 }

15

16 const val1 = apiCall(true); // type Extra inferred

17 console.log("Online for : "+val1.extra.hours_online); // no checks

In this example at Line 16, the type inferred type for val1 now is Extra. This is because the
call to apiCall describes its return type as being dependent on the argument extra passed to it.
This is represented as CondT<typeof extra> at Line 8. When an argument is passed to CondT,
its type is resolved by using pattern matching (see Line 2). Also notice the how type inference
will unify Lines 8,10 and 12, ensuring the returned types are consistent.

The ability for types to depend on other values is also sometimes referred to as dependent
types, however, TypeScript does not support it fully yet. However, features such as pattern
matching and conditional types allows the type system to perform a large number of checks that
a dependently typed system would be able to do.

3.5 Summary

This chapter focused mainly on the powerful abstractions provided by type systems of languages
like TypeScript, which can allow us to typecheck complex program behaviours that many popular
languages do no currently support. Section 3.1 provided a primer on how types are described in
TypeScript. Section 3.2 discussed the concept of pattern matching in context of type systems.
Section 3.3 discussed the concept of pattern matching along with recursion in context of type
systems. Section 3.3 also discussed the problem of typechecking reversal of arguments in a
varidaic function. Finally, Section 3.4 presented the concept of conditional typing along with its
ability to be used for narrowing.

19

Chapter 4

Type Systems for Program
Optimization

Types in intermediate languages have been a popular means of performing compiler optimization.
Typed intermediate languages allow the compiler to disambiguate polymorphism, determine
reaching stores, and, generally, reason about dynamic language features. One of the earliest
works that proposed using a typed intermediate language to perform optimization was by [16].
The optimizations proposed by this work have now become standard in languages like Java. The
general rationale behind this work was to alleviate the overhead due to polymorphism, both in
terms of polymorphic calls and performing garbage collection. Later, languages like MLton [20]
extended these ideas to eliminate all polymorphism by transforming the whole program. Apart
from optimization, they can also guarantee specific safety properties of a language. [21] proposes
a non-intrusive extension to Java that guarantees that specific classes do not escape the scope of
its packages. Popular languages, like Rust, take this a step further and provide memory safety
using ownership types.

Traditional optimizations, based on types, are only sometimes possible for dynamically
typed languages. Type inference is hard (in languages like Python and Javascript) and nearly
impossible (in languages like R), coupled with the fact that the traditional notion of types is
not even true because of how objects exist in these runtimes. For instance, optimizing programs
written in the R Programming Language is particularly hard [4]; it implements lazy evaluation
of arguments, supports late binding, and allows users to modify the runtime stack on the fly.
To enable meaningful optimizations based on types for dynamic languages, managed runtimes
like V8 [19] for Javascript, JVM [9] for Java, and Rsh [22] for R. These runtimes use speculation
(mainly on types) to allow optimizations. However, it is not always clear what “types” an
intermediate language should focus on in such languages.

4.1 Typed Intermediate Language for ML

TIL [16] introduced a typed intermediate language for optimizing ML code. The programs
produced by TIL were three times faster than conventional ML programs while using one-fifth of
the memory. Keeping types around as code while transforming it from one intermediate language
to another is quite helpful; for instance, knowing the types of variables allows the compiler to
fix variable sizes and even load them onto the stack instead of having all allocations on the
heap. Over the years, this separation of stack variables and heap objects has become a standard
technique when modeling memory abstractions (points-to analysis performed on Java programs).

This work was one of the first to discuss the usefulness of statically knowing types in
the optimization context where objects and polymorphism exist. This work discusses two main
optimizations: (i) intensional polymorphism and (ii) nearly tag-free garbage collection. The
first optimizations allows polymorphic calls to treat types as values inside functions for dynamic
dispatch at run-time while also optimizing call sites where precise types can be determined
statically. The second optimization removes tags for most stack variables. In strongly typed
languages, types for all variables are known statically (if not precise types, at least whether they
are pointers or not is known); this allows the compiler to associate tag information with functions.

20

A.foo B.foo

obj

B.foo A.foo B.foo

obj

B.foo

Figure 4.1: Using type information to disambiguate call site in Java.

Further, stack frames can also use liveness analysis results to optimize garbage collection.

4.1.1 Intensional Polymorphism

Intensional polymorphism allows types to be constructed and passed as values at runtime. A
good reason for supporting runtime polymorphism is that it allows more expressive programming.
An object can be used to pass and receive multiple arguments from a function, concepts of inher-
itance can allow heterogeneous lists to be created and operated on at runtime, and programming
patterns like visitor patterns can be used to write highly extensible code. Let us consider the
following function sub:

1 fun sub[α] (x:α array , i: int) =

2 typecase α of

3 int => intsub(x, i)

4 | float => floatsub(x, i)

5 | ptr(τ) => ptrsub(x, i)

Here, the function dynamically dispatches based on the run-time type of the argument x.
In languages like Java and C++, we implement this logic using dispatch tables; the core concept,
however, remains the same. If α can be determined statically, then the optimizer can eliminate
the typecase directly to obtain the following function:

1 fun sub[float] (x, 10) = floatsub(x, 10)

Introducing types to the run-time, though providing the benefits of dynamism and ex-
pressiveness, comes with the following costs. Firstly, maintaining the representation of types at
run-time becomes a storage overhead. In cases where we cannot infer precise types statically, an
appropriate dispatch mechanism needs to be implemented, leading to more extensive function
code. Second, the type information must be propagated through each compilation stage, requir-
ing all passes to be type-preserving. The following Java code represents how this optimization
is implemented in modern Java programs (Figure 4.1 shows this process diagrammatically).

1 class A { void foo(); }

2 class B extends A { void foo(); }

3 class C extends B { void foo(); }

4 ...

5 A obj = new B();

6 obj.foo(); // The call site here can be disambiguated to B.foo

4.1.2 Nearly Tag-Free Garbage Collection

Suppose a garbage collector only has partial information about the location of pointers. In that
case, it uses conservative techniques like conservative-pointer finding[3] that may end up treating
arbitrary bit patterns as pointer addresses. Such approximate approaches often have arbitrary
limitations on data representation due to garbage collection. TIL records enough information
about types at compilation time so that at any point in the runtime where garbage collection
can occur, we have the information about all the pointers. Compared to conservative techniques,
this allows the garbage collector to collect all unreachable objects at runtime.

In this approach, the types of stack variables are used to determine pointer variables
statically. The garbage collection is said to be “nearly” tag-free because tags now only end up
in heap-allocated objects. The layout of each stack frame is modified so that the locations of
all pointers can checked by looking at the stack frame. The precision of garbage collection is

21

further improved by additionally recording information about pointers no longer in us (liveness
information).

4.2 Confinement Types

The idea of confinement [21] is simple: we have a Java program, and we want to ensure that
an object of type confined cannot escape the scope of its package (nor should it be possible to
construct an object of this type outside the package). The idea is to declare classes as confined
and use the type system to enforce these rules. If the program type checks successfully, we can
be sure that an object cannot escape the scope of its package. Let us consider the following Java
code snippet.

1 package p;

2

3 public class Table {

4 private Bucket [] buckets;

5 public Object [] get(Object key) { return buckets; }

6 }

7

8 class Bucket {

9 Bucket next;

10 Object key , val;

11 }

In the above example, the field buckets escapes through Table.get, even though it is
declared private. The example shows how an object reference can leak out of a package, and
now users can access an object meant to be confined to this package. The private keyword in
Java cannot be used to enforce the property of confinement statically. Confinement is forced
using two sets of constraints.

• Confinement rules: applies to the classes defined in the same package as the confined class.
These rules ensure that confined types are not exposed to the public nor widened to
nonconfined types.

– C1: A confined type must not appear in the type of a public (or protected) field or
the return type of a public (or protected) method.

– C2 : A confined type must not be public.

– C3 : Method invoked on an expression of confined type must either be defined in a
confined class or be anonymous.

– C4 : Subtypes of a confined type must be confined.

– C5 : Confined types can be widened only to other confined types.

– C6 : Overriding must preserve anonymity of the methods.

• Anonymity rules: applies to methods inherited by the confined classes, potentially library
code, and ensures that these methods do not leak a reference to the distinguished variable
this, which may refer to an object of confined type.

– A1: The this reference is used only to select fields and as the receiver in the invocation
of other anonymous methods.

This work proposes ConfinedFJ, which extends Featherweight Java. Featherweight Java
limits its calculus to five basic operations (object construction, method invocation, field access,
casts, and local unstable access). In ConfinedFJ, classes can be declared public or confined,
and methods can optionally be declared anonymous. Also, class names are pairs of identifiers
bundling a package and class names, just as in Java.

4.2.1 Type Rules

This section describes the type rules to support confinement and anonymity as discussed in the
previous section.

22

Rule 1 : Class C is confined if its definition in the class table starts with the conf prefix.

CT (C) = conf class C �D{...}
conf(C) (4.1)

Rule 2 : Class C is visible to any arbitrary class D if class C is public.

public(C)

visible(C,D) (4.2)

Rule 3 : Class C is visible to class D if they belong to the same package.

packof(C) = packof(D)

visible(C,D) (4.3)

Rule 4 (safe-subtyping) : Safe sub-typing is allowed if both classes belong to confined types.

C ≺ D conf(C) ⇒ conf(D)

C ⪯ D (4.4)

Rule 5 : The type of a method m defined in class C is given by mtype.

mdef(m,C) = D [anon] B m(Bx) {return e; }) ∈ methods(D)

mtype(m,C) = B → B (4.5)

Rule 6 : A method can be overridden only if it was not previously defined (in a callable scope)
or if the new method which is being declared is anonymous then the method it overrides must
also be anonymous.

either m is not defined in D or any of its parents

override(m,C,D) (4.6)

OR

mtype(M,C) = C → C0 mtype(m,D) = C → C0(anon(m,D) ⇒ anon(m,C))

override(m,C,D) (4.7)

Rule 7 : A method m defined in class C ′
0 is anonymous in class C0 if it is declared using the

anon keyword.

mdef(m,C0) = C ′
0 anon C m(Cx){...} ∈ methods(C ′

0)

anon(m,C0) (4.8)

Rule 8 : Anonymity constraints enforce the following constraints on the syntax.

• If an expression e is anonymous in Class C then the typecast of e into C ′ is also anonymous.

• Anonymous expressions e in class C when passed to an object constructor of type C ′ must
also return an expression anonymous in class C.

• The assignment of this to a variable is disallowed.

• If e is anonymous in class C then e.f is also anonymous in class C.

• If e is anonymous in class C and e is anonymous in class C then method call e.m(e) is also
anonymous in class C.

• Field selection using ‘this‘ pointer is always anonymous.

23

• If a method m is anonymous in class C and expression e is anonymous in class C then
method call this.m(e) is anonymous in class C.

4.2.2 Expression Typing Rules

Rule T-VAR : Type of a well-typed variable x is found in Γ.

Γ ⊢ x : Γ(x) (4.9)

Rule T-FIELD : The fields of a well-typed expression e with fields f are also well-typed.

Γ ⊢ e : C fields(C) = (C f)

Γ ⊢ e.f1 : Ci (4.10)

Rule T-INVK : The resultant type of calling a method (derived from a well-typed expression
e of type C0) m (with arguments e of type C) of type D → C (where C is a safe-subtype of D)
defined in D0 such that either C0 subtypes D0 or the method is anaonymous in D0 is C.

Γ ⊢ e : C0 Γ ⊢ e : C mtype(m,C0) = D → C C ⪯ D

mdef(m,C0) = D0(C0 ⪯ D0 ∨ anon(m,D0))

Γ ⊢ e.m(e) : C (4.11)

Rule T-NEW : Arguments e of type C passed to a new constructor of class C which has
fields f of type D (where arguments passed are safe-subtypes of fields C ⪯ D) is well-typed in Γ
with type C.

fields(C) = (D f) Γ ⊢ e : C C ⪯ D

Γ ⊢ new C(e) : C (4.12)

Rule T-UCAST : If an expression e of type D is being cast to type C then either D is not
confined or C is confined too.

Γ ⊢ e : D conf(D) ⇒ conf(C)

Γ ⊢ (C)e : C (4.13)

Rule T-METHOD : For a method m (defined in C0) with body e the following constraints
must hold. (i) If m is anonymous then e must also be anonymous (ii) Method body e must be
visible to the defining class C0 (iii) Method body e (with type D) must be a subtype of the
method return type C. (iv) (see Rule 6) Method definition is anonymity preserving.

x : C, this : C0 ⊢ e : D D ⪯ C override(m,C0, D0)

x : C, this : C0 ⊢ visible(e, C0) (anon(m,C0) ⇒ anon(e, C0))

[anon] C m(C m) { return e; } OK IN C0 ◁ D0 (4.14)

Rule T-CLASS : For a confined class C which extends D the following must hold. (i) If D
is confined, then so is C. (ii) If D is visible C. (iii) The rules of T-METHOD are recursively
applied and must hold.

Notice that there are no rules restricting types C for fields f . This is because confinement
is checked when methods are checked (recursively with their bodies).

fields(D) = (D g) K = C(D g,C f) { super(g); this.f = f ; }

visible(D,C) (conf(D) ⇒ conf(C)) M OK IN C ◁ D

[conf] class C ◁ D { C f ; KM } OK (4.15)

24

Rules for static expressions are left out as they are easy to derive in the same way and
available in the paper. In essence, it ensures operations such as creation of new objects, method
calls, etc recursively (all arguments as well) follow the rules of visibility.

Example: The following program no longer typechecks in the updated typing system,
the widening of type Bucket[] to type Object violates T-METHOD where the body e is not a
safe-subtype of method’s declared return type Object[].

1 package p;

2

3 public class Table {

4 Bucket [] buckets;

5 public Object [] get(Object key) { return buckets; }

6 }

7

8 conf class Bucket {

9 Bucket next;

10 Object key , val;

11 }

4.3 Summary

Computing types statically is not only beneficial to catching programming errors but can also
help in optimizing dynamic features provided by some programming languages. The first Sec-
tion 4.1 of this chapter discussed how using typed intermediate languages can help in optimizing
programming languages. On the one hand, types were added as a runtime quantity to support
the expressive nature of intensional polymorphism 4.1.1 while types were removed from stack
variables 4.1.2 to make garbage collection more precise and efficient. The second Section 4.2
showed how types can used to guarantee some safety-related properties of a program. The
formal definitions and rules of inference were given for a subset of Java called ConfinedFJ.

25

Chapter 5

Types In Dynamic Languages

Performing simple static optimizations is futile in dynamically typed languages like R because of
prevalent features like lazy evaluation, late binding, and object evolution. We studied two works
that look at ways of introducing types to such languages. One common thing across both works
is that they rely on runtime instrumentation to gather facts about types.

5.1 A Case for Typed R

A recent work that proposes a type system for The R programming Language is [17]. They
use TypeTracer, which extracts function signatures by instrumenting calls to functions. Once
sufficient information is gathered by executing a large number of functions, the executions are
then verified against the observed signature. This is done by a package called ContractR, which
decorates function bodies with type assertions.

In the proposed type system for R, the authors mainly make use of primitive types,
approximating higher-order functions as any → any (any is the most generic type which can
be anything) and adding simple subtyping rules (in R, all the primitive types have a unique
representation for invalid values called “NA”; subtyping rules were added to allow subtyping of
the following form: “int” subtypes “int + NA” represented as int[] <: ˆ int[] where ˆ int[] is
subtype with support for NA values). Figure 5.1 shows supported types in the R Type Language.

The workflow of the approach is intuitive and stems from the learning that optimizing
functions across function boundaries is the key to optimizing R. For instance, much previous
work shows that the eager calling convention can significantly improve optimizations that the
JIT compiler can perform. Improving information maintained at function boundaries is likely to
improve performance in such a system. This work found that under this type of system, 80% of
the functions are monomorphic or have only one polymorphic argument.

Figure 5.1: R Type Language

26

5.2 A Case for Typing Dynamic Objects in Python

In great contrast to the previous work, this [15] work takes a different look at objects. In the
case of R, objects are often very loosely defined (meaning they do not necessarily have any well-
defined structure). As a consequence, any primitive with a field called class is treated as an
object of that class. This is why focusing on such aspects of R makes more intuitive sense. This
is, however, different in Python; Python code is usually not in such disarray. A lot of primitive
and object-oriented code is written in Python. Well-defined server frameworks that handle real-
world clients are also written in Python. This means that objects of different shapes and sizes
will be encountered when optimizing Python. The work takes a different approach by studying
in detail the different types and shapes of objects, how they mutate, and what benefit concepts
of flow sensitivity provide. Going back to the example from Chapter 1, consider this slightly
modified code.

1 class Panel:

2 def __init__(self ,p1 ,p2):

3 self.title = title

4 self.width = width

5 if self.width is not None:

6 self.height = self.width

7

8 def _title(self):

9 if isinstance(self.title , str):

10 return Text.from_markup(self.title)

11 else

12 return self.title.copy()

13

14 def setheight(self ,height):

15 self.height = height

16

17 def measure(self):

18 return self.width * self.height

19

20 panel1 = Panel(Text() ,42)

21 panel2 = Panel("Example Table",None)

22 panel2.width = 5 # modification

23 panel2.setHeight (42) # extension

Constructor Polymorphism : Objects panel1 and panel2 are constructed at Line 20 and
Line 21 respectively. In both cases, the constructor method is called, and it returns the following
types. typeof(panel1) = {title : Text, width : int, height : int} and typeof(panel2) = {title :
Str, width : NoneType}.

Object Evolution : Behaviour of panel1 and panel2 changes over time. One of three things
is possible: (i) extension (refers to the addition of new attributes, see Line 23), (ii) modification
(refers to modification of types of existing attributes, see Line 22), and (iii) deletion (refers to
deletion of attributes).

5.2.1 Class-Based Types

Class-based types are modeled similarly to traditional class-based systems, where a class contains
attributes. If an instance of a class does not have an attribute, it is simply said that the attribute
is NULL or undefined; allowing equal treatment of all objects of a class. This, however, leads to
some imprecisions in the case of Python. In the previous code snippet, let us consider the function
measure. We cannot statically determine if the function always succeeds (without throwing an
exception) or not. One approach to alleviate the imprecision caused by unionized types is to
use local type refinements; see function title for an example. The refinement, isinstance,str,
ensures that in the true branch, the type of self.title is a str.

27

5.2.2 Object-Based Types

This approach uses object evolution to model their types. The following two abstractions can be
used to adjust the precision of such type assignments.

Store Abstraction All possible types that can be observed are unionized to obtain the fol-
lowing relation.

1 Γ = {panel1 : Panel@20 , panel2 : Panel@21}

2 CT = {

3 Panel@20 : {title : Text , width : int , height : int},

4 Panel@21 : {title : str , width : int | NoneType , height : int |
abs}

5 }

Flow Sensitivity The classtable can be modified as the program flows.

1 Γ = {panel1 : Panel@20 , panel2 : Panel@21}

2 CT = {..., Panel@21 : {title : str , width : NoneType , height : abs

}}

3 CT = {.., Panel@21 : {title : str , width : int | NoneType , height

: abs}}

4 CT = {.., Panel@21 : {title : str , width : int | NoneType , height

: int | abs}}

Observe that in the previous example, we only performed weak updates. This is due to
the possibility of an alias existing during runtime; this creates the situation where we cannot
again type check measure to ensure that it always runs successfully.

5.2.3 Results

This study used the top 50 popular Python projects on Github1(whose testing framework was
pytest). The main aim was to study the prevalence of dynamic behaviors in these programs.
All events were recorded in a trace file, and results were classified on the basis of constructor
polymorphism and object evolution. The following notable results were found.

Constructor Polymorphism. Around 20% of constructors were polymorphic. Most poly-
morphic constructors have a low degree (less than five), indicating that only a few object types
are made. 87% are polymorphic on attribute types, 6% differ on the attributes that exist inside
them, and 7% exhibit both of these behaviors. A study of separability based on 0-call site,
2-call site, 4-call site, and argument-type context showed that the resultant type produced by a
constructor was heavily tied to input arguments more than 80% of the times this was the case.

Object Evolution. It was found that out of all the runtime objects, around 27% objects and
33% classes expose object evolution. Compared to the deletion of attributes, extension and
modification are prevalent. Out of all the objects that evolve, evolution is monotonic in nature
(here, we say evolution is monotonic only if the addition of new attributes takes place and types
only change to their subtypes).

Effectiveness of Class-Based Types vs Object-Based Types. Though object-based types
were found to be much more precise, their implementation was much more complex when com-
pared to class-based types. It is worth noting that by using local refinements, the precision of
class-based types was significantly improved without adding a large amount of complexity.

5.3 Summary

This chapter studied the work done in recent years on designing designing impactful type systems
for dynamic languages. In it two such studies, one for the R programming language and another
for python. The first study on The R Programming Language (see Section 5.1) showed how a

1libraries that have special hardware requirements or have special hardware requirements were excluded

28

simple and effective type system could be implemented to type-check R. This type of system
provides contracts between function calls and their expected types; this has the potential to
improve the correctness of R programs while improving the precision of JIT feedback. The
second study (see Section 5.2) presents a comparative study of how dynamic objects are created
and used in the wild. This work presented a comparative study on classifying object dynamism
based on constructor based polymorphism and object evolution. They classify the benefits each
approach provides while commenting on possible future directions.

29

Chapter 6

Conclusion and Future Work

Type systems have become invaluable tools for reasoning about programs. Different languages
implement different type systems that provide different kinds of guarantees; some languages like
C and C++ enforce these rules only statically, while languages like Java ensure type properties
at runtime. In dynamically typed languages, determining types of variables at compile time is
difficult. Even though languages like TypeScript aim to bring a strong type discipline (with
support for features like pattern matching, recursion, and conditional typing) to Javascript, the
code still relies on transpilation to plain Javascript (which means statically computed guarantees
may not reach the execution environment). Often, in dynamically typed languages, complex
structural types themselves hold looser meanings, making static analysis without speculation
fruitless.

One interesting idea to reason about objects is based on the concept of “states”[2]. For
instance, consider a class that implements the idea of a File. A File object naturally tends to be
either open or closed, and depending on some “state” property, certain actions may be valid or
invalid. Consider the following Java code snippet:

1 class File {

2 int myFD = -1;

3 public int read () { ... }

4 public void close() { ... }

5 public void open () { ... }

6 }

If we reason about the state of the objects; we can determine that the use of read/close and
open methods is mutually exclusive. Methods read or close can only be invoked on an already
open file, while method open is only valid on a closed file. Thus, state can be bifurcated as
follows:

1 state File {

2 int myFD = -1;

3 }

4 state OpenFile extends File {

5 public int read() { ... }

6 public void close() [OpenFile >>ClosedFile] { ... }

7 }

8 state ClosedFile extends File {

9 public void open() [ClosedFile >>OpenFile] { ... }

10 }

Though intuitive, this concept was unpopular among developers and showed little interest
in becoming a standard Java language feature. This was because performing such an analysis
using typestates requires precise alias information, which is a complex problem in the presence of
multiple threads. It may be argued that “typestate” is a natural property of many programs, and
developers can, with some effort, add annotations to describe these. However, such a “feature”
sometimes becomes an extra effort, which developers actively avoid using. Even the addition
of an optional typesystem, like TypeScript, is a challenging task. Many developers believe that

30

migrating large codebases from clean, untyped Javascript code to verbose TypeScript code simply
makes it harder to maintain.

Reasoning about the program in more abstract terms can sometimes be useful, for in-
stance, consider “purity” of a function. If we can write a program analysis that can find all
the pure functions in a language like C or Java, we can generate code that can be memoized,
computed parallelly, and much more. This is what we call a “desirable property”, but sadly, in
reality, we hardly come across such cases. On the other hand, if we consider specialized frame-
works/libraries of these languages, such as React [13], we find a lot of pure functions. This is
because the structure of the React code enables local reasoning, where developers think in terms
of components, and the composition of these components makes up a user interface, making
writing impure code unnatural.

One novel way to look at creating type systems for dynamic languages like Javascript and
R could be to ignore all the lower-level details and rely entirely on the abstraction provided by
high-level libraries and frameworks. Let us consider the following React code snippet:

1 function SomeComponent(title) {

2 let [branch , setBranch] = useState (1);

3 let [userData , setUserData] = useState(undefined);

4

5 const handleBranchChange = (value) => {

6 if (value == 2) {

7 setBranch (2);

8 setUserData ({

9 name: "Meetesh",

10 email: "meeteshmehta@cse.iitb.ac.in"

11 });

12 }

13 }

14

15 return (

16 <div >

17 { branch === 1 && <ComponentUser data={ userData} /> }

18 { branch === 2 && <ComponentUser data={ userData} /> }

19 <button onClick ={ handleBranchChange}>change branch to 2</

button >

20 </div >

21)

22 }

The code defines a component called SomeComponent which takes one argument as input. The
code can be visualized as follows:

SomeComponent

title

ComponentUser@1

?object

 branch : ?integer
 userData : ?object

ComponentUser@2

?object?object

A React component is read as follows:

31

• The component takes one argument title; such values are called props or properties and
signify that these are static values. The programmer is not supposed to write/modify these
values inside the component. One might imagine it to be final fields in the local context.

• branch and userData are state variables. If any state variable changes, the entire compo-
nent and its affected children are re-rendered.

– Finding redundant re-renderings could be done using a compiler-based static analysis.
Recent (unreleased) work by Meta [11] (creators and maintainers of React) shows their
work on a compiler that uses static analysis to memoize values of components.

• On the first render of component SomeComponent initializes the state variables (branch and
userData) with initial values (initial value for branch is 1 and undefined for userdate).
This leads to the first ComponentUser being rendered (both ComponentUser are mutually
exclusive and dependent on the value of branch).

– Notice how react also makes it easy to figure when and how these state variables might
change, i.e., the method setBranch and setUserData can be used to trivially determine
what triggers a state update.

– This obviously makes a case for aliases to exist and leave function boundaries, but
we can argue that does not happen often (as this way of programming makes it more
natural to reason locally).

• When the button change branch to 2 is pressed, it calls the method handleBranchChange.

– Inside the handleBranchChange method, the state variable for branch is updated
to 2, and at the same time userData is updated to a new value.

– What do we mean by “at the same time”? This needs to be modeled precisely during
analysis, but for the sake of simplicity, we just assume state updates happen in a
sequence and are always ready before their next use.

– The component is re-rendered when branch value is re-rendered.

– Notice that only values have changed here; updating the virtual DOM is expensive. Can
we do static analysis, bypass this re-rendering step, and update the DOM directly? It
is a higher-order version of constant propagation.

Often, not all children’s components are rendered in React programs; there is usually a
dependency on some variable (it might be a property or a state variable or any value derived
using these). This is a significant part of how rendering logic is represented in React; we must
narrow our focus on them. Ideally, we want to determine their universe or part of the universe
that can allow us to disambiguate mutually exclusive conditions. Let us consider the following
figure:

SomeComponent

title branch : {1,2}
 userData : branch == 1 ?
 undefined :
 object

ComponentUser@1 ComponentUser@2

?object

undefined object

Here, we see that the state variable branch can be either 1 or 2 and nothing else. We use
this information to conditionally type all variables as being dependent on the type of branch. In

32

the above figure, we find that we can narrow down the types of values passed to SomeComponent

based on the type of branch. If the value of branch is 1, undefined is passed to ComponentUser.
When the value of branch is 2, object of the form { name: String, email: String } is
passed to ComponentUser.

In specialized programming languages, domain-specific knowledge can guide high-level
compiler optimizations. For instance, in a programming language framework like React, programs
are often pure and structured as trees. However, optimizing React poses challenges due to the
lack of a suitable intermediate language that could facilitate these optimizations effectively.
This intermediate language would need to incorporate concepts such as state variables, batched
state updates, asynchronous callbacks, and component tree updates. Our future work will focus
on exploring the design of such a language, understanding its primitives, and extending these
concepts to other similar systems.

33

References

[1] Agda. Agda, 2007. Retrieved May 8, 2024.

[2] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. Typestate-oriented
programming. In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’09, page 1015–1022,
New York, NY, USA, 2009. Association for Computing Machinery.

[3] Hans-Juergen Boehm. Space efficient conservative garbage collection. SIGPLAN Not.,
28(6):197–206, jun 1993.

[4] Olivier Flückiger, Guido Chari, Jan Ječmen, Ming-Ho Yee, Jakob Hain, and Jan Vitek. R
melts brains: An ir for first-class environments and lazy effectful arguments. In Proceedings
of the 15th ACM SIGPLAN International Symposium on Dynamic Languages, DLS 2019,
page 55–66, New York, NY, USA, 2019. Association for Computing Machinery.

[5] Olivier Flückiger, Guido Chari, Ming-Ho Yee, Jan Ječmen, Jakob Hain, and Jan Vitek.
Contextual dispatch for function specialization. Proc. ACM Program. Lang., 4(OOPSLA),
2020.

[6] Olivier Flückiger, Jan Ječmen, Sebastián Krynski, and Jan Vitek. Deoptless: Specula-
tion with dispatched on-stack replacement and specialized continuations. In Conference on
Programming Language Design and Implementation (PLDI), 2022.

[7] Urs Holzle. Adaptive optimization for self: Reconciling high performance with exploratory
programming. PhD thesis, 1994. Copyright - Database copyright ProQuest LLC; ProQuest
does not claim copyright in the individual underlying works; Last updated - 2023-02-23.

[8] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with dynamic
deoptimization. volume 27, pages 32–43, 07 1992.

[9] JVM. Jvm, 2007. Retrieved May 8, 2024.

[10] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA, 2002.

[11] meta. meta, 2004. Retrieved May 8, 2024.

[12] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, 1978.

[13] React. React, 2013. Retrieved May 8, 2024.

[14] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, jan 1965.

[15] Ke Sun, Sheng Chen, Meng Wang, and Dan Hao. What types are needed for typing dynamic
objects? a python-based empirical study. In Chung-Kil Hur, editor, Programming Languages
and Systems, pages 24–45, Singapore, 2023. Springer Nature Singapore.

[16] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. Til: a type-directed
optimizing compiler for ml. In Proceedings of the ACM SIGPLAN 1996 Conference on
Programming Language Design and Implementation, PLDI ’96, page 181–192, New York,
NY, USA, 1996. Association for Computing Machinery.

[17] Alexi Turcotte, Aviral Goel, Filip Křikava, and Jan Vitek. Designing types for r, empirically.
Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

[18] TypeScript. Typescript, 2012. Retrieved May 8, 2024.

34

[19] V8. V8, 2008. Retrieved May 8, 2024.

[20] Stephen Weeks. Whole-program compilation in mlton. In Proceedings of the 2006 Workshop
on ML, ML ’06, page 1, New York, NY, USA, 2006. Association for Computing Machinery.

[21] TIAN ZHAO, JENS PALSBERG, and JAN VITEK. Type-based confinement. Journal of
Functional Programming, 16(1):83–128, 2006.

[22] Ř. Ř, 2016. Retrieved May 8, 2024.

35

	Abstract
	Introduction
	Related Works
	Type Declarations From Existing Types
	Data Declarations For Completely New Types
	Challenges in Describing Types for Dynamic Languages
	Summary

	Type Inference and Their Limitations
	Milner Type Polymorphism
	Modeling Types as a System of Linear Equations
	Limitations of Milner's Type Inference System

	Summary

	Strength of Type Systems
	Describing Types in TypeScript
	Pattern Matching
	Example 1
	Example 2

	Pattern Matching With Recursion
	Conditional Typing
	Summary

	Type Systems for Program Optimization
	Typed Intermediate Language for ML
	Intensional Polymorphism
	Nearly Tag-Free Garbage Collection

	Confinement Types
	Type Rules
	Expression Typing Rules

	Summary

	Types In Dynamic Languages
	A Case for Typed R
	A Case for Typing Dynamic Objects in Python
	Class-Based Types
	Object-Based Types
	Results

	Summary

	Conclusion and Future Work

