Why generating TAC for
JavaScript is hard”

[ICT, Bengaluru

Meetesh Kalpesh Mehta, Manas Thakur, 29th September 24

Managed Runtimes: JavaScript

Managed Runtimes: JavaScript

~ Parser — > AST \

Source Code

Bytecode T T T T T T PP TP TP T PP PP PP AST |nterpretel“

......................
......
......
* g,

Language Extensions, ’ JIT — Native

Frameworks, Libraries Bytecode Interpreter A ‘ ‘

"
—"

Managed Runtimes: JavaScript

Source Code

Language Extensions,

Frameworks, Libraries

React: Functional Ul’s

Video.|s

function Video({ video }) {
return (
<div>
<Thumbnail video={video} />

<h3>{video.title}</h3>
<p>{video.description}</p>
<[fa>
<LikeButton video={video} />
</div>
)3
}

Even though JavaScript is dynamic, not all code written in it really is.

React Forget compiler performs memoization to speedup renders.

7~
"

My video

Video description

5
https://react.dev/

Managed Runtimes: Modelling Ul

Managed Runtimes: Modelling Ul

f(x)
f(state)

y

picture

Managed Runtimes: Modelling Ul

Me Kart _

= function({ added: [], items: [1,2] })

Managed Runtimes: Modelling Ul

Me Kart

,_/_;—vu

added. length

Alength

Items

State
added: []

Items: [1,2]

Managed Runtimes: Modelling Ul

State
added: []

Items: [1,2]

Managed Runtimes: Modelling Ul

Me Kart

,_/_;—vu

added. length

Alength

Items

State
added: []

Items: [1,2]

Managed Runtimes: Modelling Ul

Me Kart

,_/.;—vu

added. length

A:length
— - -

State

added: [] =P

Items: [1,2]

Recompute

State

12

Managed Runtimes: Modelling Ul

Me Kart

,_/.;—vu

added. length

A:length
— - -

State

added: [] =P

Items: [1,2]

‘
¢'
*

Recompute
State

13

Managed Runtimes: Modelling Ul

Me Kart

,_/.;—vu

added. length

A:length
— - -

State

added: [1] —P

Items: [1,2]

‘
¢'
*

Recompute
State

14

Managed Runtimes: Modelling Ul

Me Kart

,_/.;—vu

added. length

Alength
— - -

State

added: [1] —P

Items: [1,2]

‘
¢'
*

Recompute
State

15

Managed Runtimes: Modelling Ul

Me Kart

added. length
added. length
~ - -

State

added: [1] —P

Items: [1,2]

‘
¢'
*

Recompute
State

16

Managed Runtimes: Modelling Ul

Me Kart

added. length
added. length
~ - -

State

added: [1] —P

Items: [1,2]

‘
¢'
*

Recompute
State

17

Managed Runtimes: Modelling Ul

State
added: [1]

Items: [1,2]

Managed Runtimes: De-sugaring

v
. Recompute
/ State
\ V.
—» Fun3 —P Fun5

State - Fun1

Managed Runtimes: De-sugaring

const App = ({state}) => <Funl state={state} />

const Funl = ({state}) => <div>
<Fun2 len={state.len} />
<Fun3 items={state.items} />
</d1iv>

const Fun2 = ({len}) => <div>
Me Kart
<Fun4 len={len} />

</div>

const Fun3 = ({items}) => <div>
{items.map(i => <Fun5 item={i} />)}
</d1iv>

20

Managed Runtimes: De-sugaring

const App = ({state}) => createElement(“Funl”, { state : state }, [])

const Funl = ({state}) =>
createElement(“div”, {},
[
createElement (“Fun2”, { len : state.len }),
createElement (“Fun3”, { items : state.items }),
]
)

const Fun2 = ({len}) =>
createElement(“div”, {},
[
createTextElement(“Me Kart”),
createElement(“Fund4”, { len : len }),

]
)

const Fun3 = ({items}) =>
createElement(“div”, {},
[
...items.map(I => createElement(“Fun5”, { item : i }, [1))
]
)

21

Why JavaScript Works

» Fast (enough) + useful abstractions
- Mature language infrastructure (standard tests, parsers, working groups)

» Incredible backwards compatibility (babel tests language compatibility all
the way back to node@2015)

» Very well maintained specification

- Wide adoption

22

Why JavaScript Works | nedsissingietiweadee

Execution Model

React: Functional Ul design

- Fast (enough) + useful abstractions React Native: hybric
development

- Mature language infrastructure (standard tests, parsers, working groups)

» Incredible backwards compatibility (babel tests language compatibility all
the way back to node@2015)

» Very well maintained specification

- Wide adoption

23

Why JavaScript Works | nedsissingietiweadee

Execution Model

React: Functional Ul design

- Fast (enough) + useful abstractions React Native: hybric
development

- Mature language infrastructure (standard tests, parsers, working groups)

» Incredible backwards compatibility (babel tests language compatibility all
the way back to node@2015)

» Very well maintained specification

- Wide adoption

24

Why JavaScript Works | nedsissingietiweadee

Execution Model

React: Functional Ul design

- Fast (enough) + useful abstractions React Native: hybrid
development

- Mature language infrastructure (standard tests, parsers, working groups)

» Incredible backwards compatibility (babel tests language compatibility all
the way back to node@2015)

» Very well maintained specification

- Wide adoption

25

Why JavaScript Works | nedsissingietiweadee

Execution Model

React: Functional Ul design

- Fast (enough) + useful abstractions React Native: hybrid
development

- Mature language infrastructure (standard tests, parsers, working groups)

» Incredible backwards compatibility (babel tests language compatibility all
the way back to node@2015)

» Very well maintained specification

- Wide adoption

26

Why JavaScript Works | nedsissingietiweadee

Execution Model

React: Functional Ul design

- Fast (enough) + useful abstractions React Native: hybrid
development

- Mature language infrastructure (standard tests, parsers, working groups)

* Incredible backwards compatibility (babel tests language compatibility all
the way back to node@2015)

» Very well maintained specification

- Wide adoption

27

Why JavaScript Works | nedsissingietiweadee

Execution Model

React: Functional Ul design

- Fast (enough) + useful abstractions React Native: hybrid
development

- Mature language infrastructure (standard tests, parsers, working groups)

* Incredible backwards compatibility (babel tests language compatibility all
the way back to node@2015)

» Very well maintained specification

- Wide adoption

28

Why JavaScript Works | nedsissingietiweadee

Execution Model

React: Functional Ul design

- Fast (enough) + useful abstractions React Native: hybrid
development

- Mature language infrastructure (standard tests, parsers, working groups)

* Incredible backwards compatibility (babel tests language compatibility all
the way back to node@2015)

» Very well maintained specification

- Wide adoption

29

In a nutshell

Expression(Expression, Expression, ...);

((1,2,3,() == { console.log("Hello World") }))()

30

In a nutshell

Expression(Expression, Expression, ...);

((1,2,3,() == { console.log("Hello World") }))()

Callee(Identifier, Identifier, ..):

let
let
let
let
let
let

t$1
t$2
t$3
t$4
t$5
1$6

1

2

3

function() { console.log("Hello World"); }
(t$1, t$2, t$3, t$4)

t$5()

31

Motivating Example - 1

let a = (1,2,3,() = {})

console. log(a.name)

let a = (1,2,3,() = {})

console. log(a.name)

Motivating Example - 1

let t$1 =1
let t$2 = 2
let t$3 = 3
let t$4 = () => {}

let a = (t$1, t$2, t$3, t%$4)

console. log(a.name)

33

let a = (1,2,3,() = {})

console. log(a.name)

Motivating Example - 1

Not Semantics

let t$1 = 1 Preserving
let t$2 = 2

let t$3 = 3

let t$4 = () => {}

let a = (t$1, t$2, t$3, t%$4)

console. log(a.name)

34

let a = (1,2,3,() = {})

console. log(a.name)

Output: *’

Motivating Example - 1

Not Semantics

let t$1 = 1 Preserving
let t$2 = 2

let t$3 = 3

let t$4 = () => {}

let a = (t$1, t$2, t$3, t%$4)

console. log(a.name)

Output: ‘t$4’

35

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yieldl() { return 'Ash Ketchum'; }

b
+
iter = g();
iter.next():
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

36

Motivating Example - 2

var ylieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yieldl() { return 'Ash Ketchum'; }

b
+
iter = g();
iter.next():
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

37

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yield]l() { return 'Ash Ketchum'; }

&
+
iter = g();
iter.next():
iter.next("name"):

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

38

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yieldl() { return 'Ash Ketchum'; }

b
+
iter = g();
iter.next():
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

39

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yieldl() { return 'Ash Ketchum'; }

b
+
iter = g();
iter.next():
iter.next("name"):

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

40

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yieldl() { return 'Ash Ketchum'; }

b
+
iter = g();
iter.next():
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

41

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yieldl() { return 'Ash Ketchum'; }

b
I3
iter = g();
iter.next():
iter.next("name"):

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

42

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hi1i"), "pokemon")] = "Pikachu"

get [yieldl() { return 'Ash Ketchum'; }

b
+
iter = g();
iter.next():
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

43

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yieldl() { return 'Ash Ketchum'; }

b
+
iter = g();
iter.next():
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

Hil

44

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yield]l() { return 'Ash Ketchum'; }

&
+
iter = g();
iter.next():
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

Hil

45

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get -() { return 'Ash Ketchum'; }
-
I3
iter = g();
iter.next();
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

Hil

46

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yieldl() { return 'Ash Ketchum'; }

b
I3
iter = g();
iter.next():
iter.next("name"):

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

Hil

47

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yield]l() { return 'Ash Ketchum'; }

&
+
iter = g();
iter.next():
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

Hil

48

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {
C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu"

get [yield]l() { return 'Ash Ketchum'; }

&
+
iter = g();
iter.next():
iter.next("name");

let myObj = new C()
console. log(myObj.pokemon)
console. log(myObj.name)

Hil

49

Motivating Example - 2

var yieldSet, C, 1iter;
functionx g() {

C = class {
[(console. log("Hii"), "pokemon")] = "Pikachu" C = class {
"nokemon": "Pikachu"
. : - get name() {
}.get [yield] () { return 'Ash Ketchum'; } PR S VDS
' }

})
iter = g()

iter.next():
iter.next("name"):

Hil
let myObj = new C()
console. log(myObj.pokemon)

console. log(myObj.name) Pikachu

Ash Ketchum =

JavaScript Code is Fragile to Change

» Side-effect prone nature

JavaScript Code is Fragile to Change

» Side-effect prone nature 0.f =10 =/= {it t¢1 = o.f

JavaScript Code is Fragile to Change

» Side-effect prone nature

« Complex semantics

Javas

« Side-effel

« Complex

@ meetesh06 3 weeks ago

| am looking at this testcase: test262

| see that babel fails this test on the website; | don't know how the babel test pipeline works so | am not sure what to make of it! (would
love to know how these tests apply to babel; as | am trying to create a s2s transformer aimed at transforming code to a subset of JS)

Source

T
await /x.y/g;
T

Parsed AST

BINOP -- Left: Identifier —- 'await' // <- Non module level code treats top level await as an identifier?? is : (0J t

| --= Right: Member Expression...

Transformed Code

let js3%$5 = await; // <= ;(
let js3%6 = x.y;

let js3%4 = js3%$5 / js3%6;
let js3%7 = g;

let js3%$3 = js3%4 / js3%7;

Is it incorrect to assume that top-level awaits imply module mode for the parsed code, or are there cases when this assumption is
incorrect?

(*1) @

0 Answered by nicolo-ribaudo 3 weeks ago

await is a valid identifier outside of modules, so as you discovered that file can be parsed in two different ways:

e

54

JavaScript Code is Fragile to Change

» Side-effect prone nature
« Complex semantics

» Things silently break

JavaSt -
let o = {
vallo: 10,
m: function() { return this.vallQ }
+

| let r1 = o.m() // ===> 10
 Side-effect

» Complex se l

let o = {

* Things siler valle: 10, |
m: function() { return this.valle }

}

let t$1 = o.m
let r1 = t$1() // ===> undefined

56

JavaScript Code is Fragile to Change

» Side-effect prone nature
« Complex semantics
» Things silently break

» Strange semantics

JavaScript Code is Fragile to Change

var z = 3;
let temp = delete delete z

+ Side-effec // temp is 'true’
« Complex ¢ l
» Things sil

var z = 3;
. let t1 = delete z
Strange > let temp = delete tl

// temp 1s 'false'

JavaScript Code is Fragile to Change

var z = 3;
let temp = delete delete z
|
let temp = delete (delete z)
. |
» Side-effec letI temp

delete (false)

let temp = delete false <— RValue
° : |
COmpleX ' let temp = true
* Thingssilk .., - ;.
let t1 = delete z

° Strange S| let t1 = false

let temp = delete t1l

delete t1 <— LValue

let temp

false

let temp

JavaScript Code is Fragile to Change

var z = 3;
let temp = delete delete z
|
let temp
. |
o« Side-effec 1let temp = delete (false)
|

delete (delete 2z)

let temp = delete false <— RValue
« Complex .|

© Note: The syntax allows a wider range of expressions following the delete operator, but
° Th | ngS S|I only the above forms lead to meaningful behaviors.

|
° Strange S| let t1 = false

let temp = delete t1l

|
let temp

|
let temp

delete t1 <— LValue

false

JavaScript Code is Fragile to Change

» Side-effect prone nature
« Complex semantics
» Things silently break

» Strange semantics

Irndium

» Slightly more manageable subset of the language
» Basic utilities needed for Analysis

- Model High Level Language Features

62

Iridium (Block Diagram

Source Path

@babel/parser
A
» Project —>»{ ProjectFiles » Parse —»{Resolve Imports —>»{ Module Graph —>»{ JS3Builder —>» [/ WIP
Playground
Iridium

63

JS3 Gen

- Make the process of subsetting language less error prone.

» Speed up development by generating stubs.

64

JS3 Gen (Block Diagram

JS3 Spec
JS3Builder Constructors, Type Specification
Iridium
Babel JS Type Specification —> JS3Gen ——» (Constructors, Handlers, Type Specification)

|

3JS Reduced Language Specification

Why Even Perform Static Analysis?

» Modelling and optimising High Level concepts in hard.

Why Even Perform Static Analysis?

» Modelling and optimising High Level concepts in hard.

#include <functional>
#include <iostream> #include <functional>

® #include <iostream>

std::function<int(void)> foo() {
std::function<int(void)> fun =

[1() { return 11; }: int main(int argc, char xargv[]) {
return fun; std::cout << 11 << std::endl;
1 return 1;

}

int main(int argc, char xargv[]) {
int res = foo()();
std::cout << res << std::endl;
return 1;

¥

67

Why Even Perform Static Analysis?

» Modelling and optimising High Level concepts in hard.

#include <functional>
#include <iostream>

X86 64 Assembly

std::function<int(void)> foo() {
std::function<int(void)> fun =

[1() { return 11; };
return fun;
I3

Clang (00):

int main(int argc, char *argv[]) { Clang (01):
int res = foo()(); Clang (02):
std::cout << res << std::endl; Clang (03):

return 1;

¥

3637
300
290
290

LOC
LOC
LOC
LOC

- - - -

148 fns
11 fns
11 fns
11 fns

68

Conclusion

 JavaScript may very well be impossible to statically analyse.

69

Conclusion

 JavaScript may very well be impossible to statically analyse.

 But there are millions of lines of code that run JavaScript.

70

Conclusion

 JavaScript may very well be impossible to statically analyse.
 But there are millions of lines of code that run JavaScript.

» Many of these are TOTALLY PURE functions

71

Conclusion

- JavaScript may very well be impossible to statically analyse.
 But there are millions of lines of code that run JavaScript.

» Many of these are TOTALLY PURE functions

Safe to Execute in Parallel No Side Effects

712

Relevant Works

- Call Graphs
» [Indirection-Bounded Call Graph Analysis, ECOOP-24]
- [Correlation tracking for points-to analysis of javascript, ECOOP-12]
- Analysing React Code
» React Forget Compiler - 2023
- Tree Shaking / Code Splitting
» Webpack - 2014
- Static Inference/Compilation
- [JavaScript AOT Compilation,DLS-18]

» [Type Inference for Static Compilation of JavaScript, OOPSLA-16]

73

Experience with R

® Debugging Dynamic Language Features in a Multi-tier
Virtual Machine

updates

Anmolpreet S
b19070@students.iit
IIT Mandi
India

Meetesh Kalpesh
meeteshmehtad@g

()

Abstract 2z Reusing Just-in-Time Compiled Code

Multi-tiered virtual-machine (VM) enj}
In-Time (JIT) compilers are essential fi
language program performance, but c
bugging them is challenging. In this
Derir; a novel tool for tackling this iss
a JIT compiler for R. Derir demystifi
beginners and experts. It allows use
tem’s runtime state, make modificati

textual specializations. With a user-

- . . .
"Iﬁl‘ﬂl")ﬂ"ll\ﬂ Fﬂﬂhl"a(‘ nﬂl‘l.‘ armmnNnitraroc

MEETESH KALPESH MEHTA, IIT Mandi, India

SEBASTIAN KRYN SKI, Czech Technical University in Prague, Czechia
HUGO MUSSO GUALANDI, Czech Technical University in Prague, Czechia
MANAS THAKUR, IIT Bombay, India

JAN VITEK, Northeastern University, USA

Most code is executed more than once. If not entire programs then libraries remain unchanged from one run
to the next. Just-in-time compilers expend considerable effort gathering insights about code they compiled
many times, and often end up generating the same binary over and over again. We explore how to reuse
compiled code across runs of different programs to reduce warm-up costs of dynamic languages. We propose

to use speculative contextual dispatch to select versions of functions from an off-line curated code repository.
That renositorv is a nercistent database of nreviouslv comniled fiinctions indexved bv the context under which

