
Reusing Contextually Specialized JIT Precompiled Units

A THESIS

Meetesh Kalpesh Mehta

In partial fulfillment of the requirements for the degree of

of

MASTER OF SCIENCE (BY RESEARCH)

in Computer Science and Engineering

Under the Supervision of

Dr. Manas Thakur

SCHOOL OF COMPUTING AND ELECTRICAL ENGINEERING (SCEE)

INDIAN INSTITUTE OF TECHNOLOGY (IIT) MANDI

June 2023

Reusing Contextually Specialized JIT Precompiled Units

A THESIS

Meetesh Kalpesh Mehta

In partial fulfillment of the requirements for the degree of

of

MASTER OF SCIENCE (BY RESEARCH)

in Computer Science and Engineering

Under the Supervision of

Dr. Manas Thakur

SCHOOL OF COMPUTING AND ELECTRICAL ENGINEERING (SCEE)

INDIAN INSTITUTE OF TECHNOLOGY (IIT) MANDI

June 2023

“Talent hits a target no one else can hit; Genius hits a target no one else can see.”

–Arthur Schopenhauer

To CompL ...!

SCHOLAR DECLARATION

I hereby declare that the entire work embodied in this thesis entitled Reusing Contextu-

ally Specialized JIT Precompiled Units is the result of investigations carried out by me in

the School of Computing and Electrical Engineering, Indian Institute of Technology Mandi,

Mandi, Himachal Pradesh, India, under the supervision of Dr. Manas Thakur, Assistant

Professor, School of Computing and Electrical Engineering, Indian Institute of Technology

Mandi, Mandi, Himachal Pradesh, India.

I also declare that it has not been submitted elsewhere for the award of any degree or

diploma. In keeping with general practice, due acknowledgments have been made wherever

the work described is based on the findings of other investigators. Any omissions that might

have occurred due to oversight or error in judgement are regretted.

Date: 08/07/2023

Place: IIT Mandi,

Himachal Pradesh, India

Mr. Meetesh Kalpesh Mehta

Enrollment No.: S20012

School of Computing and Electrical Engineering,

Indian Institute of Technology Mandi,

Mandi, Himachal Pradesh, India - 175075.

THESIS CERTIFICATE

It is certified that the entire work in this thesis entitled “Reusing Contextually Spe-

cialized JIT Precompiled Units” has been carried out by Mr. Meetesh Kalpesh Mehta,

Enrollment No. S20012, under my supervision and guidance for the degree of Master of Sci-

ence (by Research) in the School of Computing and Electrical Engineering (SCEE), Indian

Institute of Technology Mandi, Mandi, Himachal Pradesh, India.

To the best of my knowledge and belief, present thesis completed by Mr. Meetesh

Kalpesh Mehta fulfils the requirements of the M.S. (by Research) ordinance of the Indian

Institute of Technology Mandi, Mandi, Himachal Pradesh, India. It contains original work

of the candidate and no part of it has been submitted elsewhere for any degree or diploma.

Date:

Place: IIT Mandi,

Himachal Pradesh, India

Dr. Manas Thakur

Research Guide

Assistant Professor

School of Computing and Electrical Engineering,

Indian Institute of Technology Mandi,

Mandi, Himachal Pradesh, India - 175075.

Acknowledgments

I began my journey at IIT Mandi during the winter of 2020, amid the peak of the Covid-

19 pandemic. After completing my B. Tech degree and passing the GATE examination, I

was unsure about the direction I wanted to pursue. However, my interest in compilers, which

was sparked by my final year project, drove me to seek out opportunities in this field.

Fortunately, I found an excellent mentor, Dr. Manas Thakur, who has been an invalu-

able guide and true friend throughout my journey. Working alongside him has allowed me

to learn from the best in the world and develop my skills in this fascinating area of com-

puter science. Collaborating with the entire Ř team, including Dr. Jan Vitek, Dr. Olivier

Flückiger, Sebastián Krynski, Hugo Gualandi, and Jan Jecman, was a fulfilling and enjoy-

able experience. Working alongside such a rigorous research team has taught me invaluable

lessons and allowed me to enhance my knowledge and skills.

I would like to extend my sincere thanks to Dr. Samar Agnihotri, Dr. Varunkumar

Jayapaul, Dr. Sriram Kailasam, Dr. Pradeep Kumar, And Dr. Jinesh Machchhar, members

of my annual progress committee for their time, and insights in reviewing my work and

providing constructive comments and suggestions from the beginning.

I would like to extend my sincerest gratitude to Aditya, Arjun, and Prakash, my esteemed

colleagues and fellow researchers, for their unwavering support and invaluable contributions

throughout my research. The time spent with CompL (Compilers and Programming Lan-

guages), is definitely the highlight of this journey, from the long Arnehar walks to the excit-

ing outings and the paper presentations, everything put together is the perfect balance for an

enjoyable and rewarding research life.

Last but not least, I would like to express my gratitude to my parents, my brother (who

is happily married now :)), and all the friends I have made throughout this journey, Dr.

Saurabh, Amarjit, Sanket, and Govind.

Meetesh Kalpesh Mehta

Abstract

Just-in-time compilation has become an indispensable tool for speeding up programs

written in dynamic languages. In these languages, offline static analysis efforts often prove

futile due to reflection, possibility of side effects, and lack of types. JIT compilers can

overcome these challenges by taking advantage of run-time feedback to perform context-

sensitive speculative optimizations. However, these optimizations come at the cost of ex-

pensive compilation at run-time, which may lead to high warmup times and unexpected

slowdowns due to deoptimization or late-stage compilations.

In this thesis, we present a novel approach to preserve context-sensitive JIT compiled

units in an analyzable and reusable format. These compiled units can be reused across dif-

ferent runs of the same program or even different programs. Our strategy records multiple

versions for each function, compiled under different contexts, and features a dispatching

mechanism to pick the most appropriate of these versions at run-time. To improve the effi-

ciency of this dispatching, we split our contexts into a two-level hierarchy. We also employ

an offline pass that removes redundant code versions and identifies which parts of the con-

texts are most relevant for dispatching.

The implementation in this thesis extends Ř, a JIT for the R programming language. We

evaluated it over a set of standard benchmarks and real world programs. Compilation times

are significantly reduced, without sacrificing the peak performance of the JIT.

KEYWORDS: JIT, Just-in-time compilers, dynamic analysis, specialization, code reuse,

serialization.

Contents

Acknowledgments i

Abstract ii

List of Figures vii

Abbreviations xi

1 Introduction 1

1.1 Motivation . 4

1.2 Objectives . 8

1.3 Thesis Organization . 9

1.4 Contributions . 9

2 Background 11

2.1 Just-In-Time Compilation . 13

2.2 The Ř JIT Compiler . 14

2.3 Profiling in Ř . 16

2.3.1 Type feedback . 16

2.3.2 Test feedback . 18

2.3.3 Callee feedback . 19

2.4 Contextual Dispatch . 20

2.5 Runtime Behaviour of Contextual Dispatch 21

2.6 Redundancy in Compilation Contexts 24

2.7 LLVM Bitcode . 25

iii

2.8 Summary . 26

3 Serializing JIT Binaries 29

3.1 Overview . 31

3.2 The Code Repository . 31

3.3 AST Hashing . 33

3.4 Bitcode Patching . 35

3.4.1 Pointers to global variables . 35

3.4.2 Pointers to closure objects . 36

3.4.3 Indirect references to objects stored in the constant pool 37

3.4.4 Patching deoptimization reason 38

3.4.5 Patching deoptimization metadata 39

3.4.6 Patching references to the source pool 40

3.5 Pool Patching . 40

3.6 Summary . 41

4 Offline Bitcode Analysis and Processing 43

4.1 Running Example . 44

4.2 Binary Reduction . 47

4.3 Feedback Versioning . 52

4.4 Level-2 Collisions . 55

4.5 Summary . 57

5 Deserializer and L2 Dispatcher 60

5.1 Deserializer . 62

5.2 Patching . 63

5.3 L2 Dispatcher . 64

5.4 Summary . 66

6 Evaluation 69

6.1 Experimental Setup . 69

6.2 Compilation Time and Peak Performance 70

iv

6.2.1 Real-world performance . 74

6.2.2 End-to-end performance . 75

6.2.3 Performance under context explosion 75

6.2.4 Phase change behaviour . 77

6.3 Iterative Serialization . 79

6.4 Impact of OBAP and Two-Level Dispatch 81

6.5 Discussion . 83

6.6 Summary . 84

7 Related Work 87

8 Conclusion and Future Work 90

References 93

Publications based on this Thesis 97

v

vi

List of Figures

1.1 Block diagram of our proposed approach. 2

1.2 Per iteration performance of Ř over GNUR. 4

1.3 Code snippet to demonstrate the problem of context explosion with JIT spe-

cialized binaries. 6

2.1 Snippet showing late reification of environments in R. 11

2.2 An example demonstrating side effects caused due to forced arguments in

R. 12

2.3 Different JIT optimized versions of f. 13

2.4 Figure showing the pipeline of Ř. 15

2.5 Code snippet showing profiling in Ř. 16

2.6 32-bit struct in Ř for holding type-feedback information. 17

2.7 32-bit struct in Ř for holding test-feedback information. 18

2.8 32-bit struct in Ř for holding observed-callees information. 19

2.9 Contextual Dispatch in Ř. 21

2.10 Figure showing the layout of the r-viz visualizer. 22

2.11 Context lattice generated for the call-site specializations by r-viz. 23

2.12 Call box feature of the r-viz that shows the relative call order of different

contexts at runtime. 23

2.13 Contextual redundancy in Ř. 24

2.14 Figure depicting the LLVM bitcode generated from the provided R source

code. 25

3.2 Code snippet showing the AST hashing implementation. 34

vii

3.3 Figure showing patches applied to global variables. 36

3.4 Figure showing patches applied to closure references. 36

3.5 Figure showing the different kinds of indirections in the constant pool. . . 37

3.6 Figure showing patches applied to constant pool references. 38

3.7 Figure showing patches applied to deoptimization reason object. 39

3.8 Code snippet showing the additional information stored in the Deoptimiza-

tion Metadata. 39

3.10 Figure showing the process of patching the serialized pool references. . . 40

3.9 Figure showing patches applied to source pool references. 40

4.1 Overview of the OBAP stage. 43

4.2 Code snippet showing the creation of feedback slots in rir bytecode. . . . 45

4.3 Code snippet showing different runtime contexts under which foo is called. 46

4.4 Contextually specialized binaries obtained after performing serialization. . 46

4.5 Algorithm for function weights analysis. 48

4.6 Algorithm for breath first call order analysis. 49

4.7 Algorithm for argument effect analysis. 50

4.8 Second-level context curbing. 52

4.9 Example to demonstrate slot selection. 54

4.10 Slot selection algorithm. 56

6.1 Figure comparing Řbc (red line) with Ř (green line) for the first 15 iterations

of benchmark programs. A representative subset of 18 programs from the

RBenchmarking suite are shown. 71

6.2 Table showing the reduction in compilation and OBAP statistics; JIT over-

head is a sum of compilation time, deserializer load/link time and LLVM

bitcode to machine code generation time (in case of normal Ř the deserial-

izer times are zero). 73

6.3 Real-world performance . 74

6.4 Version skew (Ř in red, Řbc with compiler in green) 76

6.5 Speedups when using a large code repository. 77

viii

6.6 (a) Ray-tracings with recompilation-induced phase change at iteration 5. (b)

Performance degradation caused by over generalization after phase change. 78

6.7 Code snippet to demonstrate slowdowns due to overgeneralization of con-

texts. 78

6.8 Figure showing the emergence of new contexts under iterative feedback. . 80

6.9 Relative performance of the last-seen strategy (blue line) vis-à-vis Řbc (red

line). 81

6.10 Number of compilations when using only last-seen strategy. 83

ix

x

ABBREVIATIONS

AOT Ahead of Time

AST Abstract Syntax Tree

BC Byte Code

CFG Control Flow Graph

FV Feedback Version

HAST Hash of the AST

GC Garbage Collector

JIT Just In Time

L2 Two Level Dispatcher

LLVM Low Level Virtual Machine

OBAP Offline Bitcode Analysis and Processing

GNUR Stands for GNU R, the standard implementation of the R programming language

SSA Single Static Assignment

SEXP S-Expression Format

xi

xii

Chapter 1

Introduction

The growing adoption of dynamic languages is in part due to the ability of just-in-time

(JIT) compilers to perform powerful online optimizations. The general idea is that the cost

of optimizations will be amortized by the benefit provided by the compiled code. This

behavior of JIT-based runtimes may lead to huge warmup costs, which in some cases may

never get amortized. One popular way to tackle the problem of huge warmup times is to

use ahead-of-time (AOT) compilers [1,2]; where code is compiled offline and the generated

binaries are made available to the runtime for direct execution. Note that AOT compilation

is beneficial (compared to plain interpretation) only when offline analysis may indeed lead

to optimizations taking place. This is rarely true in dynamically typed languages (such as

R), where even simple optimizations might not be possible (discussed in Chapter 2).

To conjure a strategy that obtains the benefits of JIT compilation without its warmup

overheads, observe that JITs perform optimizations using a two-pronged approach: They

can make assumptions about a function at its call site, and they can use its runtime profile

as feedback to optimize its body incrementally. The more the JIT learns this way from a

function’s execution, the more can it optimize the function’s future invocations. One could

also visualize the state space of JIT-compiled binaries as being derived from multiple prior

runs of a given program, each of which contributes to possibly different behaviors for each

compiled function, based on two levels of contexts: call-site assumptions and feedback

information. Given a call site to a function in future program runs, selecting a suitable binary

from previously observed options while ensuring efficient dispatch poses a challenge.

1

Serializer OBAP Deserializer

Feedback

Raw
repository

Curbed
repository

Fig. 1.1: Block diagram of our proposed approach.

Let us now consider this problem of linking to a suitable contextually specialized binary

from multiple JIT-compiled versions of a function. If we are overly optimistic and pick a

highly specialized binary, the dispatch may succeed for compatible contexts but fail and de-

optimize for others. This may in turn cause extra compilations and/or degrade performance.

If we are overly conservative and pick a binary that is generic enough to be dispatched

across multiple contexts, we would end up sacrificing the peak performance that can be

derived from specialization in the first place. The ideal solution should maintain all the con-

textually specialized binaries and very carefully pick the most relevant binary, based on an

exact match of the two-level runtime context. The problem with such an approach would

be to first deal with the challenge of code explosion while preserving the binaries and then

incur an inefficient dispatch during runtime. In this thesis, we describe a three-staged ap-

proach that addresses all the challenges described above: It allows for an efficient dispatch

from a set of functionally unique binaries1, and successfully maintains peak performance

with significant reductions in warmup time as well as late-stage compilations.

Figure 1.1 shows an overview of our approach. The idea involves three stages: (i) The

Serializer compiles and serializes contextually compiled binaries while indexing them with

call-site assumptions as well as feedback information. This stage also inserts indirections

during serialization, such that absolute addresses can be patched in the future. (ii) The Of-

fline Bitcode Analysis and Processing (OBAP) stage identifies functionally-unique binaries

and removes the rest, while masking redundant parts of the context, to achieve a smaller

repository of curbed binaries (the subset of functionally unique binaries tagged with the part

of the context which makes them unique). (iii) The Deserializer is the runtime that dis-

1Given a set of compiled code versions (for a function), a functionally-unique set excludes compiled ver-
sions that are identical or similar (based on some metric) to some other version. Also see Section 2.6.

2

patches to the most relevant binary based on the runtime context while making use of the

metadata generated in the OBAP phase to patch the binaries while linking. All the stages

are designed keeping in mind the goal of replicating the performance of previously seen JIT

compiled binaries while reducing the overheads as much as possible.

We have implemented our approach for the R programming language. R is a dynamically

typed lazy language known to make the life of compiler designers notoriously difficult [3]

due to possible side effects while forcing promises, reflective access to runtime stack, and so

on, all of which deem it extremely unsuitable for AOT compilation. As our test bed, we use

the research JIT compiler Ř [4], which takes R bytecode through various intermediate levels

and converts the same to LLVM bitcode (a near-binary IR) for further optimization. Ř main-

tains multiple versions of a function and performs contextual dispatch based on assumptions

about arguments at its call sites. The versions are created based on runtime feedback, such

that each new compilation incorporates more assumptions to minimize subsequent deopti-

mizations. As may be expected, such contextual specialization and dispatch, though known

to be highly effective in improving the peak performance of R functions, suffers from a

high warmup time as well as overheads due to late-stage compilations. We thus process

LLVM bitcodes through the pipeline described above and aim to achieve similar or better

performance than Ř, while keeping the associated overheads to a minimum.

We evaluate our implementation over standard R benchmarks and real-world use cases,

and compare it with baseline Ř in terms of peak performance, warmup time, and compilation

overhead. In addition, we assess the individual components of our approach by showcasing

their effects on binary reduction and context curbing. Throughout the text, we discuss alter-

nate approaches and the design choices that we make to come up with an efficient strategy

that is precise enough. Overall, we conclude that our scheme not only brings the bene-

fits of JIT compilation at less cost but also makes it compelling for real-world scenarios by

reducing the impact of classical problems like context explosion and redundant compilation.

3

Iteration

Ti
m

e
in

 s
ec

on
ds

0.1

1

10

100

Ř GNUR Ř (No Profiling)

mandelbrot (shootout)

Iteration

Ti
m

e
in

 s
ec

on
ds

0.1

1

10

100

Ř GNUR Ř (No Profiling)

pidigits (shootout)

Fig. 1.2: Per iteration performance of Ř over GNUR.

1.1 Motivation

In the world of dynamically typed languages such as R, where not much is known about

a function before its execution, only runtime feedback provides suitable information that

can adapt a function to the runtime. This approach is used by JIT compilers to make spec-

ulations that translate into improved real-world performance. Let us consider the following

benchmark programs from the RBenchmarking [5] suite:

mandelbrot defines functions to generate the Mandelbrot set and verify the results

based on the number of iterations. It calculates the set by iterating over a grid and

accumulates binary values to determine membership, returning the final result.

pidigits defines functions for performing arithmetic operations on big integers and

implements the pidigits algorithm. It calculates the digits of the mathematical constant

pi using the Bailey-Borwein-Plouffe (BBP) formula.

A harness calls the benchmark programs with predefined inputs, and the time taken per

call (or iteration) is plotted in Figure 1.2. Here mandelbrot is a simple program where one

hot function is responsible for the majority of the runtime. On the other hand, pidigits is a

more complex program where computation is divided into various functions. We compare

the times taken by GNUR, Ř and Řno pro f iling to answer the following:

• Is profiling-based speculation really worth it? Comparing both examples, it becomes

evident that Ř outperforms GNUR by a significant margin. However, when profiling

4

is disabled, the performance of Řno pro f iling is either worse or comparable to GNUR.

This observation can be attributed to the highly dynamic nature of R [3], where limited

optimization opportunities exist without speculation.

• Is warmup really a problem? In a simplistic scenario like mandelbrot, where a sin-

gle hot function is repeatedly called and spans around 50 lines of code, the impact of

warmup is unlikely to be significant. However, in real-world programs such as pidig-

its, warmup becomes a substantial concern, which raises questions about the benefits

of having a JIT itself.

In the case of pidigits, even after compilation, each iteration is only approximately

0.05 seconds faster than GNUR. Consequently, the time spent in the initial two iter-

ations will only be amortized if the function is executed more than 1300 times. The

decision to compile code never guarantees a definite payoff.

For instance, if we only intended to run pidigits 100 times, opting not to use a JIT

would result in significantly faster execution. This predicament is a common issue

that affects all JITs, where the initial overhead and warmup period must be weighed

against the subsequent performance gains.

It is clear that speculation-based JIT compilation in R provides improved peak perfor-

mance, but as a result of this speculation, the resultant compiled code is heavily tied to that

runtime. An attempt to reuse the older JIT binaries must account for this context-sensitive

nature of the binaries and select the most relevant binary based on the runtime context.

We now use an R code snippet to illustrate how different runtime contexts can emerge

for the same function; see Figure 1.3. Consider the call to foo at line 4 in program 1,

where we call foo using the call-site context C1 = ⟨int, int,missing⟩, indicating that the

first two arguments passed were observed to be integers and the third argument was missing.

This call-site context allows the JIT compiler to resolve some aspects of the caller that can

lead to optimizations. For instance, under this calling context, it can be inferred that the

arguments that are provided to the function are free from any side effects. Knowing the

side-effect-free nature of variables x, y and z allows the JIT to safely remove line 2 (in

foo), which would not be possible otherwise. This is because, in R, arguments are passed

5

1 foo <- function(x, y, z=TRUE) {
2 x;
3 if (z) res <- m1(x, y)
4 else res <- m2(g, y)
5 res <- bar(res, g)
6 res
7 }

1 # Program 1
2 m1 <- fun1; m2 <- fun2;
3 g <- matrix(...); bar <- fun3;
4 foo(10, 11) # context C1

1 # Program 2
2 m1 <- fun1; m2 <- fun2;
3 g <- vector(...); bar <- fun3;
4 ...
5 foo(10, 11) # context C2

1 # Program 3
2 m1 <- fun1; m2 <- fun2;
3 g <- matrix(...); bar <- fun3;
4 foo(10, 0) # context C1
5 ...
6 foo(10, 11, FALSE) # context C3

Fig. 1.3: Code snippet to demonstrate the problem of context explosion with JIT specialized binaries.

as unevaluated promises which are forced when needed. These promises can be laced with

side effects and can also modify the runtime stack; in other words, the argument passed to

the function can modify the function they are given to. The call-site context also allows

the JIT to determine that the true branch will always be taken; because the default value

of the argument z is TRUE and line 2 is free from side effects. Although we were able to

apply several optimizations leveraging the call-site context, these optimizations represent

only a fraction of the JIT’s full potential. Additionally, the JIT leverages runtime feedback

gathered from previous executions of the foo function to achieve further specialization

through optimizations like inlining, scope resolution, constant folding, and more.

If we take a look back at what just happened, the JIT specialized each compilation of

foo to the program’s runtime in an effort to generate the most optimized binary. Now let us

consider the calls to foo made from Program 1 (at line 4) and Program 2 (at line 5); we see

that the call-site context is the same but in this case, the type of the variable g has changed

(from matrix to vector). If we were to reuse the previously compiled binary for foo

(from Program 1), we would end up deoptimizing making the code reuse effort futile. Thus,

on one hand, it is possible to only serialize very generic JIT compilations (compilation done

without any speculation), but that would mean that we end up losing significant performance

(see Řno pro f iling in Figure 1.2). In the case of Program 3, we see that the first call to foo is

under a previously seen context C1 = ⟨int, int,missing⟩, but the second call to foo is under

a new context C3 = ⟨int, int, bool⟩. We would like to be able to dispatch the first call to the

binary that was compiled under C1 and leave the new unseen context to the JIT.

6

As explained above, we see that small changes in the context can lead to differently

optimized binaries getting generated. This context explosion can happen exponentially if

we consider the compilations obtained from a large set of programs from different sources.

If we were to reuse the previously generated code, we would need to account for all these

compilations and match them accurately with the runtime. The problem of reuse can be

solved by answering two basic questions.

(i) Is it possible to reduce the set of contexts by eliminating redundant contexts?

(ii) Is it possible to efficiently match the compilation context with the runtime context?

In this work, we answer both these questions and propose a set of general techniques

that can be used to adapt the code reuse strategy for any JIT system.

Our approach. This work proposes to extend a just-in-time compiled system with L2

dispatch strategy and an offline code repository, with the aim of decreasing how many times

the compiler is invoked. At a high level, our approach is as follows. Each time the system

is asked to compile a function (compile(f)→ V), it does as requested, additionally, the pair

⟨C,V⟩, where context C encodes all of the compiler’s assumptions, is stored in the repository.

A single function may be associated with many such pairs. Subsequent calls to f query the

repository for an applicable compiled code fragment. To bound the size of the repository,

the OBAP process deduplicates ⟨C,V⟩ and ⟨C′,V ′⟩ if the context C′ is entailed by C and if

V ′ is similar to V .

In practice. The devil lies in the engineering details. Our implementation must answer

a number of practical questions. What is a context? We extend previous work by [4] to

include the runtime feedback information recorded by the interpreter. How to dispatch on

contexts? We perform a two-level dispatch that uses both the information available at the call

site, and an inline cache of previously observed feedback. What to store in the repository?

We store a portable intermediate representation of the compiled functions along with the

compile time contextual data. How to curate the repository? We remove redundant entries

by using similarity metrics and then tag each entry with a representative context subset.

7

Expectations. What should we expect from the resulting system? We should be able to

run all R programs as we have not restricted the semantics of the language. Given that some

features of R generate code on the fly, it is to be expected that the compiler will be called

from time to time. Furthermore, Ř has some limitations that prevent the compilation of a

number of idioms, so interpretation overheads cannot be eliminated entirely. We expect to

see a reduction in warmup times as we will not have to perform the most expensive steps

of compilation (high-level optimizations in PIR and LLVM low-level optimizations). We

expect to be able to reuse code across the same program and different programs using the

same libraries. Peak performance should be unchanged, provided the dispatch costs are not

prohibitive. We expect the code repository to be large but not unreasonable in size.

Results. Our empirical results suggest that the approach presented can reduce compile

times by 3.38× while retaining peak performance. We also observed that by re-using previ-

ously compiled versions of functions, it is sometimes possible to reduce the impact of phase

change behavior in programs. Finally, OBAP can reduce the size of code repositories by

over 60%.

1.2 Objectives

The main aim of this thesis is to answer the following research questions.

RQ1. How effective is our scheme in comparison to a traditional JIT that uses runtime feed-

back to perform contextual specialization?

RQ2. How effectively can our offline processing phase get rid of redundant binaries and

elide unnecessary specialization?

RQ3. What is the impact of the two-level dispatch help in preserving peak performance?

RQ4. Does our scheme handle pathological cases that arise in a complex JIT system involv-

ing multiple compilation contexts due to speculation and deoptimization?

8

1.3 Thesis Organization

The remainder of this thesis is structured as follows. In Chapter 2, we discuss the chal-

lenges of optimizing R, the idea of a JIT compilation, and the working of Ř. In this chapter,

we also discuss the contextual-dispatch system of Ř and the redundancy of contexts in com-

piled code. Chapters 3,4, and 5 describe the three stages of our approach: the serializer,

OBAP, and the two-level dispatch-based deserializer. In Section 6, we evaluate our ap-

proach against the baseline Ř compiler. Section 7 provides an overview of relevant related

work, and Section 8 concludes the thesis by outlining future research directions.

1.4 Contributions

• We introduce a novel two-level dispatching strategy that allows for the reuse of contex-

tually specialized JIT binaries in highly dynamic languages. The dispatcher matches

the runtime context to the compilation context to pick the most relevant binary.

• We present an offline analysis that identifies redundant parts of contexts and identifies

functionally unique binaries to prevent code bloat and context explosion.

• We employ a backtracking slot-selection algorithm that identifies a minimal set of slots

that need to be compared during runtime for dispatching relevant binaries.

• We investigate various pathological scenarios that arise in a complex dynamic runtime

and demonstrate improvements imparted by our approach to addressing the same.

9

10

Chapter 2

Background

The R programming language provides a wide range of dynamic features that allows its

users to write highly expressive programs. R supports features like lazy evaluation, first-

class closures, dynamic typing and reflection. Such features enable the implementation of

some highly useful functionality, for example, (i) The ability to treat functions as first-class

closures allow for the creation of higher-order functions (ii) dynamic typing allows the same

function to return different values based on certain conditions (iii) lazy evaluation delays

computation until values are actually needed. Despite all the benefits that these features

may provide to the user, they often come at the cost of slow and complex runtimes. In the

past, Ahead-Of-Time (AOT) compilers have been used to analyze and optimize programs

offline, turning high-level program constructs into optimized machine code. This approach

is, however, not very impactful for programs written in dynamic languages like R.

1 // Language: C

2 // Parent scope

3 int x = 100

4 void f(int a) {

5 if (...) b = a + 1;

6 // Function scope

7 print(x);

8 }

1 # Language: R

2 # Parent scope

3 x <- 100

4 f <- function(a) {

5 if (...) b <- a + 1;

6 # Function scope

7 print(x)

8 }

Fig. 2.1: Snippet showing late reification of environments in R.

11

To understand why AOT is ineffective in case of R, let us consider the code snippet in

Figure 2.1. In case of C, when compiling the function f, we could be certain that the value

of x (see print(x) at Line 7) is loaded from the parent scope, as no other declaration of

x in the function scope shadows the global definition. This would allow the compiler to fix

a global address for x and directly reference that in the compiled code of f. However, in

case of R, this is not possible. Even though we do not see any other declaration of x in the

function scope, it may still conditionally exist there. To demonstrate this, let us consider the

following call to f in Figure 2.2.

1 badIdea <- function() {assign("x", 11, sys.frame(-1)); 1;}

2 f(badIdea())

3 # Output: 11

Fig. 2.2: An example demonstrating side effects caused due to forced arguments in R.

Here, lazy evaluation and reification of environments at runtime (environments are also

first class in R) allow for the conditional presence of the binding to x in the function scope of

f. When the call is made to f(badIdea()), the argument badIdea() is packed inside

a promise (for lazy evaluation) and loaded onto the argument stack. Inside f, whenever the

if condition is true, b <- a + 1 at Line 5 is executed. This operation forces evaluation

of a, leading to the execution of badIdea(). The call to badIdea() modifies the parent

stack frame (which is the environment of f) and creates a new binding for x in the function

scope of f. Thus, when execution reaches the print(x) statement (at Line 7), the new

value of x is found and printed (i.e. 11). Such dynamic features, coupled with arbitrary

side effects make even simple static analysis ineffective. To remedy this, most dynamic

languages employ the use of JIT compilers (see Section 2.1).

Other R implementations. GNUR is the official implementation of the R programming

language. R 2.13 introduced a bytecode compiler, documented by [6], improving perfor-

mance and efficiency. The idea of a specializing interpreter for R was explored by Purdue

FastR specializing interpreter [7], and Oracle FastR [8] extends upon this work with a full-

fledged JIT backend written in GraalVM. An alternative implementation of R, focusing on

parallel processing and optimized math libraries is provided by Microsoft [9].

12

1 # Version 1
2 f <- function(a) {
3 # Assume a has no side effects
4 if (...) b <- a + 1;
5 # Assume x is an integer
6 printInt(x)
7 }

1 # Version 2
2 f <- function(a) {
3 # Assume a is an integer
4 if (...) b <- a + 1;
5 # Assume x is an integer
6 printInt(x)
7 }

1 # Version 3
2 f <- function(a) {
3 # Assume a is a closure object
4 if (...) b <- a + 1;
5 # Assume x is an integer
6 printInt(x)
7 }

1 # Version 4
2 f <- function(a) {
3 # Assume a has no side effects
4 if (...) b <- a + 1;
5 # Assume x is any
6 print(x)
7 }

Fig. 2.3: Different JIT optimized versions of f.

2.1 Just-In-Time Compilation

The basic idea of a JIT compiler is to gather information about the program’s runtime

behavior, a process known as profiling, and utilize this information to make informed pre-

dictions. These predictions are then used to compile optimized code that caters to the most

common use cases, referred to as speculation, during the program’s execution. In situations

where a speculation turns out to be incorrect, the JIT-compiled code cannot proceed with

execution and reverts back to the base interpreter, a process called deoptimization. This

fallback mechanism ensures that the program can continue running, albeit with a potentially

slower performance. To illustrate the concept of JIT compilation, we will use the function f

from the previous example (see Figure 2.1).

Let us consider four possible compilations of f shown in Figure 2.3. The first version of

f assumes that a is free from side effects, meaning that the reaching stores to x belong to

the parent scope 1. This allows us to skip the environment lookup in the function scope of

f and directly lookup in the parent scope. Also, the assumption that x is an integer allows

us to call printInt (see Line 6), which is specialized to print integers. Similarly, in the

second version, a is assumed to be an integer, which also implies that it is free from side

effects. This additionally allows us to directly generate code for the addition of integers at

1If no side effects or explicit stores happen to a variable then we can determine if a binding exists in the
current environment or not.

13

line 4 along with all the previous optimizations from the first version. In the third version

of f, a is found to be a closure, which means that it may indeed have side effects. Thus the

reaching stores to x cannot be determined. However, the call to printInt (see Line 6)

can still be made as x is assumed to be an integer. The fourth version of f, makes only one

speculation on a being free from side effects, meaning that we can improve the lookup of x

as done in the previous versions but in this case, as type of x is assumed to be any (may be

of any type), print (see Line 6) remains unoptimized. Depending on the runtime profiling,

a differently optimized version of f is compiled, in other words, ”JIT tailors a function to

better suit the needs of the runtime”.

What happens when the speculation goes wrong? To prevent the execution of wrong

code, the compiler (i) inserts guard conditions (if/else conditions) that check if the compile

time speculations are valid at runtime (ii) trigger deoptimization when a guard fails. During

deoptimization, the execution of compiled code stops and all the intermediate results are

collected and control is transferred back to the interpreter 2. The execution is then resumed

from the point where the speculation has failed.

In a highly dynamic language like R, a JIT compiler must make meaningful optimiza-

tions to improve performance. Failure to optimize the code in a meaningful way would mean

that we not only spend additional time in compilation but also have no way to amortize it in

the future, meaning that we made the runtime even slower (see Řno pro f iling in Figure 1.2 from

the previous chapter). This is why JIT compilers for different languages employ different

approaches and IRs to better optimize programs. In the next section, we discuss the working

of the Ř JIT compiler and its various stages.

2.2 The Ř JIT Compiler

The Ř compiler is an open-source project available on GitHub. The compiler has been

written in C++ and interacts with GNUR by being dynamically linked at runtime. Addi-

tionally, a few parts of the official GNUR implementation are modified to be able to accept

EXTERNALSXP3 objects. Figure 2.4 shows the different parts of Ř.

2This is often a slow process that can lead to slowdowns in the runtime if it occurs too frequently.
3EXTERNALSXP is a special tag given to S-Expression (SEXP) objects allocated/handled by Ř

14

Source
code Bytecode PIR LLVM

Bitcode
Native
BinaryTranslation, with limited

local optimizations
and feedback injection

Context + Speculative
compilation

Translation Compilation with
local optimizations

Interpretation + feedback Execution

Deoptimization

Fig. 2.4: Figure showing the pipeline of Ř.

1. Source Code: The GNUR parser reads user-input/script files and produces language

objects stored in SEXP format. These SEXP objects are given to the Ř bytecode

compiler which translates the language objects into bytecode.

2. Bytecode: The bytecode (called rir) is a sequence of fixed-size instructions and inline

caches which can be interpreted by the Ř Virtual Machine (VM). These inline caches

are used for recording runtime feedback (see Section 2.3).

3. PIR: When a particular piece of code is frequently executed in the runtime, it be-

comes a candidate for compilation. As a first step to the compilation process, the rir

bytecode is translated into pir (which is a register-based IR with support for first-class

environments; implementation details of pir are discussed in [3]). The pir optimizer

takes the bytecode, the call-site context and the runtime feedback (see Section 2.4) to

perform high-level optimizations like inlining and scope resolution.

4. LLVM Bitcode: Optimized pir code is translated into equivalent LLVM IR and

low-level optimizations are performed. The final optimized code is then lowered into

machine code and made available for execution.

5. Native Binary: During the execution of native code, if a guard condition fails, the

execution transfers control back to the rir bytecode interpreter and records the reason

for failure.

The highlighted parts of the pipeline represent the additional overheads that the Ř JIT

compiler adds to the normal GNUR runtime. The work in this thesis primarily focuses on

reducing the overheads of these parts of the existing implementation.

15

1 # R source
2 foo <- function(a, b, c=5) {
3 res <- a * b
4 res = app1(res, c)
5 for (i in 1:10000) {
6 if (a * i > 22) {
7 res = res * 2;
8 }
9 }

10 res
11 }

1 # rir bytecode
2 0:
3 0 ldvar_cached_ a{1}
4 9 [double (s)]
5 ...
6 28 ; *(a, b)
7 mul_
8 29 [real (s)]
9 ...

10 43 ldfun_ app1
11 48 [1, <1>, valid,

0x5623639c5740(closure)]
12 ...
13 75 ; app1(res, c)
14 call_ 2
15 92 [real (s)]
16 ...
17 139 le_
18 140 [T]
19 ...

Fig. 2.5: Code snippet showing profiling in Ř.

2.3 Profiling in Ř

When R source code is translated into rir bytecode, additional inline caches known as

feedback slots get added to the bytecode. Figure 2.5 shows the source code of function

foo and its bytecode generated by Ř. In this example, the parts highlighted in red are the

additional instructions that were inserted in order to collect runtime feedback. In Ř there

are three different kinds of feedback collected at runtime. The slots at offset 9, 29, and 92

store the type feedback information; slot at offset 48 stores the observed callees information;

slot at offset 140 stores the branching information. The following subsections discuss the

storage layout and information collected by each of these slots.

2.3.1 Type feedback

To capture and store the resultant types of operations such as forcing promises (which

can occur when loading arguments from the stack), evaluating expressions, or storing the

results of function calls, 32-bit Type-Feedback slots are inserted into the bytecode. These

slots serve the purpose of recording the types that arise from these operations.

16

1 struct ObservedValues {
2 enum StateBeforeLastForce {
3 unknown,
4 value,
5 evaluatedPromise,
6 promise,
7 };
8
9 static constexpr unsigned MaxTypes = 3;

10 uint8_t numTypes : 2;
11 uint8_t stateBeforeLastForce : 2;
12 uint8_t notScalar : 1;
13 uint8_t attribs : 1;
14 uint8_t object : 1;
15 uint8_t notFastVecelt : 1;
16
17 std::array<uint8_t, MaxTypes> seen;
18 ...
19 inline void record(SEXP e);
20 ...
21 };

Fig. 2.6: 32-bit struct in Ř for holding type-feedback information.

Figure 2.6 presents the implementation of the 32-bit struct that resides in each type

feedback slot. When the bytecode interpreter encounters a feedback slot, the top element of

the runtime stack is passed to record(SEXP e) (see Line 19). This function assumes the

responsibility of setting the various fields of the slot and recording the type of the provided

SEXP. The various fields of the type feedback slots are described as follows.

1. numTypes: A 2-bit value denoting the number of types seen.

2. stateBeforeLastForce: A 2-bit value (representing an enum of type StateBefore-

LastForce) that is used to store the last state of promise before it was forced.

3. notScalar: A 1-bit value which is set to one if any recorded SEXP was a non-scalar

(i.e. a vector of size greater than 1).

4. attribs: A 1-bit value which is set to one if any recorded SEXP had a non-empty

attributes field.

5. object: A 1-bit value which is set to one if any recorded SEXP was an object.

17

1 struct ObservedTest {
2 enum { None, OnlyTrue, OnlyFalse, Both };
3 uint32_t seen : 2;
4 uint32_t unused : 30;
5 ...
6 inline void record(SEXP e);
7 ...
8 };

Fig. 2.7: 32-bit struct in Ř for holding test-feedback information.

6. notFastVecelt: A 1-bit value which is set to one if any recorded SEXP was a vec-

tor which is unsuitable for fast vector operations (if the observed SEXP is a vector

with special attributes, then optimizing it directly may break the semantics so such

optimizations get disabled when this field is set).

7. seen: It is an array that can hold upto three 8-bit values. Each element of this

array represents a number that corresponds to the type of the object. For example, 0

corresponds to nil, 1 for symbols, 4 for closures, and so on (as defined by GNUR).

2.3.2 Test feedback

32-bit Test-Feedback slots are utilized for storing branching information within a pro-

gram. These slots are strategically placed after branch condition checks inside frequently

executed loops to enable the compiler to optimize the loops in favor of the dominant branch,

thereby improving overall performance. It also aids in skipping the compilation of certain

branches that have not been executed before. This optimization technique helps reduce un-

necessary compilation overhead, resulting in more efficient code execution.

A boolean SEXP value (representing true or false, depending on which branch was

taken) is provided to record(SEXP e) (see Line 6). When feedback value is stored

in this slot, only the first 2-bits actually get used for storing information, while the remain-

ing 30-bits are unused. The overall size of 32-bits ensures proper alignment of the bytecode

and also allows for flexibility for additional profiling information in the future. The stored

value in this slot may be one of the following.

18

1 struct ObservedCallees {
2 static constexpr unsigned CounterBits = 29;
3 static constexpr unsigned CounterOverflow = (1 << CounterBits) - 1;
4 static constexpr unsigned TargetBits = 2;
5 static constexpr unsigned MaxTargets = (1 << TargetBits) - 1;
6
7 uint32_t numTargets : TargetBits;
8 uint32_t taken : CounterBits;
9 uint32_t invalid : 1;

10
11 std::array<unsigned, MaxTargets> targets;
12 ...
13 void record(Code* caller, SEXP callee, bool invalidateWhenFull =

false);
14 ...
15 };

Fig. 2.8: 32-bit struct in Ř for holding observed-callees information.

1. None: Previously never executed.

2. OnlyTrue: Only true branch is always taken.

3. OnlyFlase: Only false branch is always taken.

4. Both: Both branches have been taken.

2.3.3 Callee feedback

128-bit (32 × 4 bit) Observed-Callee slots store information about observed callees

within a program. In R, functions are treated as first-class values, allowing their bindings to

change dynamically during program execution. Consequently, every call site in R necessi-

tates a lookup process to determine the latest binding for the corresponding function in the

enclosing environment, followed by executing the call. However, to optimize performance

for static call sites (call sites that invoke a fixed function), the compiler captures and retains

the previously observed call targets at each call site.

Figure 2.8 provides an overview of the feedback slot layout employed to record this

information. When a function lookup happens, the resolved function is given to record()

(see Line 13). The various fields stored in this slot are explained below.

19

1. numTargets: A 2-bit value that represents the number of previously seen unique call

targets. Ř stores up to three call targets at a given call site.

2. taken: A 29-bit counter whose value is incremented whenever the record function is

called (if an overflow occurs, this is no longer incremented).

3. invalid: A 1-bit value that is set to true if more than three unique call targets are

observed at a call site. If this bit is set, the compiler will completely skip performing

all speculations based on this feedback slot information.

4. targets: An array of size three which holds an unsigned integer value. This unsigned

integer value corresponds to the offset index (in the function extra pool, see Chapter 3)

where the observed callees are actually stored.

Note that both type-feedback and test-feedback slots store information in a fixed-size

(32-bit) container which may be reinterpreted as a 32-bit unsigned long. We use this rein-

terpretation for encoding the feedback slots in our approach. However, as callee-feedback

contains indirect references, it is encoded by generating a unique identifier for each callee

which is discussed in Section 3.3.

2.4 Contextual Dispatch

As discussed previously, JIT compilers use feedback information in order to compile

specialized versions of functions. This idea is extended by Ř, instead of maintaining one

specialized version based on the runtime feedback, Ř instead maintains multiple versions of

functions at runtime. These versions are compiled under an assumption/context that must

be true to be able to dispatch to that version. This work was done by [4] and implemented

on the Ř JIT.

Let us consider the two versions of f shown in Figure 2.9. Here, the first version is

only valid for execution if the argument a is guaranteed to be a scalar double. Similarly,

the argument a in the second version must be a vector double. This contextual information

allows us to further specialize a function without having to insert more guard conditions in

the compiled code. Notice that when calling f with an argument of type scalar double, both

20

1 # Version 1: <double (s)>
2 f <- function(a) {
3 # a is guaranteed to be a

scalar double
4 if (...) b <- a + 1;
5 # Assume x is an integer
6 printInt(x)
7 }

1 # Version 2 <double>
2 f <- function(a) {
3 # a is guaranteed to be a

vector double
4 if (...) b <- a + 1;
5 # Assume x is an integer
6 printInt(x)
7 }

Fig. 2.9: Contextual Dispatch in Ř.

the versions of f can be dispatched (because in R, a scalar is just a vector of size one). If

we call f with a completely new type, let us say character, then both the versions cannot be

dispatched, in which case we will be forced to execute the base interpreter version. These

different compiled versions of f are compiled under a calling context (computed using the

arguments provided at runtime) and get stored in an efficiently computable lattice at runtime,

where the top of the lattice is the base interpreter context (largest context) and the bottom of

the lattice is the most specialized context (smallest context). In this case, we can say that the

first version of f is smaller than the second version (because all valid contexts for the first

version are valid for the second but not vice versa4).

In a nutshell, contextual dispatch in Ř allows for maintaining multiple versions of a

function optimized under different call-site-based contexts. This disentangles the classes of

behaviors of a function based on the context.

2.5 Runtime Behaviour of Contextual Dispatch

To lay the groundwork for the three-stage process described in this thesis, we first created

an open-source visualization tool [10] called r-viz to gain a comprehensive understanding

of the Ř runtime. This tool served as a precursor to our development process and enabled

us to gather valuable insights into the behavior of Ř. The tool allows for the visualization

of contextual traces that are generated by the Ř runtime (with additional flags enabled). The

tool uses a compressor (written in C++) to reduce the size of the generated traces which gen-

4The assumption double (s) (meaning a vector of doubles of size one) is smaller than double (meaning
a vector of doubles). This is because the domain for double (s) only includes vectors of doubles of size
one whereas the domain for double includes all the double vectors of any size. As the domain of the first
assumption is a subset of the second assumption, we say that the first assumption is smaller.

21

Fig. 2.10: Figure showing the layout of the r-viz visualizer.

erates a JSON format file that can be used by the visualizer (written in React). Figure 2.10

shows the layout of the visualizer. The left sidebar shows all the functions that were called

at runtime, the dropdown at the top allows for sorting the functions by (i) runtime, (ii) the

number of contextual specializations, and (iii) the number of calls. When a function is se-

lected, the main top section shows the relative runtime behavior of the selected context with

respect to the other contexts, and the main bottom section shows the statistics regarding the

compilation such as times spent in the various stages of the compiler and how it compares

to the actual runtime. Additionally, the bottom section can also be toggled to show the dif-

ferent functions that are called from within this function (the order is not always preserved

as cases that invoke long calls are likely to generate inaccurate information).

In order to understand the function specializations in detail, the top right dropdown in

the top section can be selected to show contextual compilations or call box apart from the

default relative runtimes. Figure 2.11 shows the performance of the last n% iterations of

each context, the lattice formed, and the basic details of compilation at runtime. Figure 2.12

shows the performance of the last n% iterations of each context, the lattice formed, and the

basic details of compilation at runtime.

Additionally, r-viz is also capable of generating call graphs, both for contextually spe-

22

Fig. 2.11: Context lattice generated for the call-site specializations by r-viz.

Fig. 2.12: Call box feature of the r-viz that shows the relative call order of different contexts at
runtime.

23

1 # Program 1
2 f <- function(a) {
3 res <- app1(a)
4 res
5 }
6 app1 <- function(a) a+1 # def1
7 f(1)
8 app2 <- function(a) a+2 # def2
9 f(1)

10 f(1) # Compilation triggered

1 # Program 2
2 f <- function(a) {
3 res <- app1(a)
4 res
5 }
6 app1 <- function(a) a/2 #def3
7 f(1)
8 app2 <- function(a) a*2 #def4
9 f(1)

10 f(1) # Compilation triggered

Fig. 2.13: Contextual redundancy in Ř.

cialized calls as well as traditional calls. These features were extensively used to study

regression programs such as reg-test-s4 (which is a part of the Ř regression test suite) and

the conclusions led to the approach discussed in this thesis. The main observations were (i)

a lot of redundant specialization was happening in the runtime and many such compilations

were never amortized. (ii) even when meaningful specializations were made, the time spent

to make them was too large and unlikely to be recouped. These observations led the way

to two important themes that we tackle in this thesis, namely, context explosion and code

bloat. Our approach tackles both these shortcomings without affecting the existing JIT and

also manages to improve it in some cases.

2.6 Redundancy in Compilation Contexts

In the context of Ř, a compiled version of a function is described by (i) source code and

(ii) context (both call-site and runtime feedback). When comparing two compiled versions

for the same function, if the compilation contexts are identical we can be sure that both the

compiled binaries are the same. But in certain cases, even when this context is different,

the resultant binary may still be the same. This can happen if the part of the context which

is dissimilar does not trigger any new optimizations. For example, let us consider the code

snippet in Figure 2.13. In both programs the same call-site arguments are provided, but

the app1 function differs. When f is compiled in the first program we would see that

the feedback slot for app1 contains def1 and def2, while the second program would

contain def3 and def4. When f gets compiled, in both cases, this contextual feedback

24

1 # R source code
2 f <- function(a,b) {
3 return (a+b);
4 }
5
6 # LLVM bitcode
7 define %struct.SEXPREC* @rsh1_0x55dd9cbc9ef0(i8* %code, %R_bcstack_t* %

args, %struct.SEXPREC* %env, %struct.SEXPREC* %closure) {
8 %1 = load %R_bcstack_t*, %R_bcstack_t** @ept_55dd9adbc850, align 8
9 %2 = alloca %struct.SEXPREC*, i64 0, align 8

10 %"PIR%3.0" = getelementptr %R_bcstack_t, %R_bcstack_t* %1, i64 0, i32
2

11 ...
12 %"PIR%0.21" = load %struct.SEXPREC*, %struct.SEXPREC** %3, align 8
13 ...
14 %6 = bitcast %R_bcstack_t* %5 to i8*
15 call void @llvm.memset.p0i8.i64(i8* align 8 %6, i8 0, i64 80, i1

false)
16 ...

Fig. 2.14: Figure depicting the LLVM bitcode generated from the provided R source code.

information is ignored by the compiler because app1 is a polymorphic call site that is

known to change frequently, hence no speculation is made in the compiled code. If we were

to simply compare the context of these two compiled versions, they would be different, but

in reality, the resultant optimized binary would be identical. The binary reduction phase (see

Section 4.2) in OBAP handles this problem.

2.7 LLVM Bitcode

LLVM bitcode is an intermediate representation (IR) employed by the LLVM compiler

infrastructure, serving as a low-level, platform-independent representation of a program.

Notably, LLVM bitcode is represented in Static Single Assignment (SSA) form. This facil-

itates various optimizations during the compilation stage, such as constant propagation and

dead code elimination. With its concise and structured nature, LLVM bitcode effectively

captures the program’s high-level semantics and low-level intricacies, enabling efficient op-

timization and code generation. In the case of Ř, the final optimized code (as depicted in

Figure 2.4) is translated into LLVM bitcode to enable low-level optimizations before gener-

ating native executables.

25

The LLVM bitcode for f is depicted in Figure 2.14, with the compiled version rep-

resented by rsh1 0x55dd9cbc9ef0 (see Line 8). The compiled functions expect the

following input arguments:

1. i8* %code: Pointer to the code object of the called closure. It enables access to

function-related entities like deoptimization metadata and promises.

2. i8* %args: Pointer to the argument stack; null if no arguments are provided.

3. %struct.SEXPREC* %env: Pointer to the enclosing environments SEXP object.

4. %struct.SEXPREC* %closure: Pointer to the callee closure object.

In Ř, the return type of all compiled functions is SEXP, specifically represented as

%struct.SEXPREC*, which acts as the container for all R objects. The compiled LLVM

code incorporates a range of instructions, including load (for retrieving values from ad-

dresses), alloca (for memory allocation), bitcast (for address conversion), call (for

invoking functions), and other relevant instructions. Comprehensive documentation regard-

ing LLVM bitcode is provided by LLVM and can be accessed online.

When converting high-level R code into LLVM, the compiled code often contains hard-

coded memory references to runtime quantities. For instance, in Figure 2.14, the symbol

@ept 55dd9adbc850 (see Line 8) represents the memory address 0X55dd9adbc850.

In this specific example, the address corresponds to the runtime constant pool. In order to

reuse the compiled code for multiple executions, it becomes necessary to patch these refer-

ences when saving the compiled code. A comprehensive discussion on the patching process

can be found in Chapter 3.

2.8 Summary

In this chapter, we explored the challenges and opportunities of optimizing dynamic lan-

guages, focusing on the R programming language. R provides a wide range of dynamic

features that enable expressive programming but come at the cost of slow and complex run-

times. We first discuss the limitations of Ahead-Of-Time (AOT) compilers in optimizing

26

dynamic languages like R and how they are overcome using JIT compilation. JIT compila-

tion involves gathering runtime information, making predictions, and compiling optimized

code tailored to the program’s behavior. We explain the concepts of speculation and de-

optimization in JIT compilers, highlighting the importance of meaningful optimizations to

improve performance. Next, we introduce the Ř JIT compiler, an open-source project writ-

ten in C++, and discuss how runtime feedback is collected. We then discuss contextual

dispatch in Ř, the problems with redundancy in compilation contexts and LLVM bitcode

generation.

27

28

Chapter 3

Serializing JIT Binaries

The first stage of our system is the serializer which deals with recording compilation ar-

tifacts from various runs into a common repository. Any approach that involves the creation

of such a repository must answer the following questions.

1. What level of specialization should be supported by the system?

The Ř JIT compiler supports contextual compilation that can specialize a function

based on both the runtime feedback as well as the call site arguments. If we disable

these optimizations we can obtain a generic binary for each function which can be eas-

ily reused across runs, however, this comes at the cost of degraded peak performance.

On the other hand, if we choose to serialize specialized binaries we can expect the

same peak performance; however it’s not very straightforward, optimizations such as

inlining and type-speculation can insert guard instructions into the generated code.

These guard instructions ensure that the speculations made during compile time hold

at runtime; in case any check fails at runtime we deoptimize by falling back to the

interpreter code. This whole process of deoptimization from compiled code to inter-

preter is a slow one and also invalidates the compiled code. Reusing must not only

correctly patch these guard points but must also take care to select a relevant binary

such that unnecessary deoptimizations are not introduced.

In this thesis, we decided to serialize contextually-specialized binaries which in turn

involves handling challenges emerging from inlining, speculation, and effective reuse.

29

2. Which compilation artifact will have the largest impact on the runtime?

In a JIT compiler, the source code is often transformed into various intermediate rep-

resentations (IR) to target different kinds of optimizations. The output of any inter-

mediate stage (or the finally generated binary) in the compilation process is a valid

candidate for a serialization artifact. However, each valid candidate has its pros and

cons. Serialization of a very high-level artifact (like an early IR) might be easier to

perform but might be less impactful overall when reused (as later stages of the com-

pilation pipeline remain unaffected). On the other hand, serialization of a low-level

artifact (such as object files) is very complicated and limits reusability (binaries gen-

erated cannot be shared across different users).

In conclusion, the problem of identifying impactful compilation artifacts boils down

to selecting an artifact that will both have a major impact on the compilation times and

is high level enough to allow sharing across different users. In Section 3.2, we discuss

our selection (i.e. the LLVM IR) and how this is handled by our system.

3. How would functions be correctly identified across different runtimes?

A function in a given runtime is simply tagged by the address it exists at, however, in

case we want to reuse these functions across different runs we need some way to tag

functions that remain consistent. This is often done by generating a unique hash for

each function. In Section 3.3, we present our approach to achieving the same.

4. How would the generated runtime binaries be patched?

Serialized binaries are bound to have references to different runtime quantities. These

references can be direct (like a pointer to the current stack pointer) or they can be

indirect references (like a lookup into a specific index of a runtime object). Patching

direct references can be done simply by replacing the addresses with external symbols

which can be patched later. However, in the case of R, indirect references need more

carefully handled. In Section 3.5 we look into the patching mechanism for the same.

5. What additional data would be needed to perform additional analysis and optimiza-

tions offline?

30

compilation

LLVM bitcode

Metadata

Lowering patches

Pool patches

*.bc

*.pool

*.meta

Function
bytecode

Linearized feedback

JIT

Fig. 3.1: Overview of the serializer stage.

For all the benefits that contextual specialization has to offer, there is also a huge pos-

sibility of redundant specialization (which happens when different sets of contextual

information have no impact on the optimization process which can lead to the resul-

tant binaries being functionally identical). When creating a code repository, we would

like to maintain things in such a manner that it remains possible to find and remove

redundant binaries offline.

3.1 Overview

Figure 3.1 shows the overview of the serializer stage. In Ř, when a function compilation

is triggered, runtime feedback (which is stored in the form of inline caches in the bytecode) is

used to perform speculative optimizations. Hence, along with the generation on *.bc (LLVM

bitcode) and *.pool (serialized pool) we also serialize the runtime feedback as a linearized

list (this is a vector obtained by a depth-first traversal of BC) in the *.meta (metadata file).

3.2 The Code Repository

During the JIT compilation of functions in the serializer stage, we save the following:

• Compiled function body (LLVM bitcode): This is obtained when the optimized PIR

code is lowered into LLVM IR. We patch generated LLVM IR (discussed in Sec-

tion 3.4) and save the patched IR in LLVM bitcode format.

31

• Constant pool: When code is lowered to native, many runtime objects get shared

across different binaries. For example, R integer objects, Symbols, and globals have

no reason to be duplicated and exist as a single instance at runtime. This patching

process is discussed in Sections 3.4.3 and 3.5.

• Source pool: It is similar in implementation to the constant pool but mainly responsi-

ble for storing LANGSXP objects (language objects from the GNUR). This is mainly

done for the logical separation of objects at runtime. This patching process is dis-

cussed in Sections 3.4.6 and 3.5.

• Profile data for function arguments (level 1 context): When a function is compiled,

assumptions are made by inferring properties of the call site. For example, if a func-

tion is called f(1,2), the compiler creates a specialized version of f under context

cx = ⟨int, int⟩ which asserts the first two arguments as scalar integers. Similarly, when

more kinds of arguments are seen, different versions are compiled.

• Profile data for function body (level 2 context): Runtime feedback such as previously

seen types of variables and different call site targets are stored as inline caches into

the rir bytecode. These inline caches are of fixed size and make up the level 2 context

of a function.

• Deoptimization information: When an assumption fails in the compiled code, the

runtime must fall back to a specific point in the code and reconstruct the interpreter

state. This information is stored in the deoptimization metadata which is generated

during function compilation.

• Requirement map: This is the set of code object dependencies created due to specu-

lative optimizations such as inlining. A binary is valid for use only if all of its require-

ments are satisfied.

We chose to store the compiled function bodies in the form of LLVM IR (bitcodes), the

last intermediate representation before Ř turns them into native executables. This offers

some advantages. First, patching the IR to make it reusable across runs is easier than doing

the same with machine code. Furthermore, the IR is more amenable to subsequent analysis

32

and processing. For example, our offline processing pass can re-compile it using a higher

optimization level than was used by the base JIT compiler (For the sake of compilation

times, Ř by default only compiles at a lower optimization level). Additionally, our binary

reduction techniques (described in Section 4.2) make use of use-def chains and control flow

information which are readily obtained from LLVM’s single-static-assignment IR.

The profile data, or context, is collected by the base JIT as part of its normal JIT oper-

ations. We split it into two groups. The argument profile data (level 1 context) is the same

context that Ř uses for its contextual dispatch feature [4]. It records the type of function

arguments as well as whether the argument promise was used eagerly or lazily. The re-

mainder of the profile data (level 2 context) refers to feedback slots inside the function body

itself. The main components of the level-two context are the observed types and laziness

of local variables. In addition to that, it also stores some other things such as the callees of

each function call site, which powers optimizations such as inlining and replacing dynamic

dispatch with static dispatch.

The deoptimization information describes how to fall back to the interpreter in case the

speculative assumptions made by the JIT are violated at run-time. We must store a block

of this information for each JIT guard in the function body. In Ř, this deoptimization data

includes the location of the internal feedback slot to update, the bytecode offset from which

to resume the execution, and the number of call-stack frames to collapse.

The requirement map is part of our serializer and deserializer system. It records all

optimization assumptions that depended on other functions or objects. For example, if we

inline a function, or if we speculatively replace a dynamic function call with a static function

call to a known target. The requirement map helps the level-2 dispatcher pick the most

appropriate code version, as will be explained in Section 4.4.

3.3 AST Hashing

Our serializer needs a way to identify and index functions across different program runs.

To do this, we compute a unique identifier which we call the hast of the function. The hast

is composed of two parts. The first part is the R namespace where the function was defined

33

1 void hash_ast(SEXP ast, size_t & hast) {
2 int len = Rf_length(ast);
3 int type = TYPEOF(ast);
4 if (type == SYMSXP) {
5 const char * pname = CHAR(PRINTNAME(ast));
6 hast = hast * 31;
7 charToInt(pname, hast);
8 } else if (type == STRSXP) {
9 const char * pname = CHAR(STRING_ELT(ast, 0));

10 hast = hast * 31;
11 charToInt(pname, hast);
12 } else if (type == LGLSXP) {
13 for (int i = 0; i < len; i++) {
14 int ival = LOGICAL(ast)[i];
15 hast += ival;
16 }
17 } else if (type == INTSXP) {
18 for (int i = 0; i < len; i++) {
19 int ival = INTEGER(ast)[i];
20 hast += ival;
21 }
22 } else if (type == REALSXP) {
23 for (int i = 0; i < len; i++) {
24 double dval = REAL(ast)[i];
25 hast += dval;
26 }
27 } else if (type == LISTSXP type == LANGSXP) {
28 hast *= 31;
29 hash_ast(CAR(ast), ++hast);
30 hast *= 31;
31 hash_ast(CDR(ast), ++hast);
32 }
33 }
34 size_t charToInt(const char* p, size_t & hast) {
35 for (size_t i = 0; i < strlen(p); ++i) {
36 hast = ((hast << 5) + hast) + p[i];
37 }
38 return hast;
39 }

Fig. 3.2: Code snippet showing the AST hashing implementation.

34

(e.g. the base namespace, or the global namespace). The second part is a 64-bit hash of

the function’s AST; Figure 3.2 shows the implementation of the AST hashing function. The

hash function is an implementation of djb2 [11] algorithm.

During the deserializer step, we will fetch compiled function bodies from the cache

utilizing the hast. In the case of identical hashes, which can happen if two functions have

the same body, the corresponding hast is blacklisted (that is, unavailable for serialization).

We also blacklist a hast if it belongs to an anonymous namespace, which can happen when

an inner function is compiled before its parent. Usually, such blacklists are not a limiting

factor for serialization, as often, post compilation of the parent, the anonymous functions

get attached to the same and get a valid unique hast.

3.4 Bitcode Patching

By default, the executable code we receive from the base JIT is not reusable across

program runs because it contains pointers and other absolute references that change between

runs. To remediate this problem, we patch the code to add some indirection where necessary.

We call this the lowering patches. We rewrite the code as follows:

3.4.1 Pointers to global variables

These are the most basic patches that directly replace memory references with a unique

symbol which can be looked up and patched later. These are memory references to global

runtime variables such as the R BCNodeStackTop (when calling a function in R, the argu-

ments are loaded onto a stack which can be accessed by resolving their address relative to the

Stack Pointer), R Visible (a boolean that dictates whether a value returned by a top-level R

expression should be printed or not), R GlobalContext (a linked list like structure that points

to the top of the runtime stack, this contains calling context information of functions), etc.

The code snippet in Figure 3.3 shows the result of applying these patches.

35

-%1 = load %R_bcstack_t*, %R_bcstack_t** @ept 557fc718f850, align 8

+%1 = load %R_bcstack_t*, %R_bcstack_t** @spe BCNodeStackTop, align 8

...

-store i32 1, i32* @ept 557fc718fd38, align 4

+store i32 1, i32* @spe Visible, align 4

Fig. 3.3: Figure showing patches applied to global variables.

The prefix spe stands for a special runtime symbol and the postfix is the unique name of

the referenced object.

3.4.2 Pointers to closure objects

The compiler can perform speculation on static calls, this means the insertion of a guard

condition that needs to hold for the compiled code to be valid. During the execution of the

function, this guard condition checks the current binding of the closure with the old value

on which speculation was performed. During serialization, a map is maintained from the

closure address to the hast of that closure. We use this mapping to replace the reference to

a closure address with its equivalent hast value. The code snippet in Figure 3.4 shows the

result of applying these patches.

-%196 = load i64, i64* getelementptr inbounds (%struct.SEXPREC, %

struct.SEXPREC* @ept 557fc732d518, i32 0, i32 0, i32 0), align 4

+%1610 = load i64, i64* getelementptr inbounds (%struct.SEXPREC, %

struct.SEXPREC* @"clos NS:base:3206135521034569687 0", i32 0, i32 0,

i32 0), align 4

Fig. 3.4: Figure showing patches applied to closure references.

The patched reference consists of (i) clos represents the type of object we are referencing

to (in this case CLOSXP or closure object), (ii) NS:base:3206135521034569687 is

the unique identifier/hast of the code object and (iii) 0 is the bytecode offset of the code

object, this is zero for outer functions and non-zero for inner functions.

36

direct index

indirect index

constant pool

Fig. 3.5: Figure showing the different kinds of indirections in the constant pool.

3.4.3 Indirect references to objects stored in the constant pool

The compiled code often contains references to other objects such as strings, vectors,

raw data, or other code objects. The constant pool is a dynamically growing array that stores

these objects such that they are protected from the Garbage Collector.

Figure 3.5 shows the two kinds of objects that can be referenced from the compiled

code. The first kind is direct references to the constant pool where we access the ob-

ject by the offset index at which it is stored. The second kind contains one more level

of indirection which is created when we compile calls that use the named call convention

(For example, when we compile a call to foo(a, b, c) using the named call conven-

tion foo(c=100, a="Hello", b="Hello"). We must first load the objects, 100,

"Hello" and "Hello" onto the stack. Additionally, to make sure the arguments are

bound correctly, we need to store extra information that says the first argument on the stack

must be bound to "c", the second argument to "a", and the third argument to "b". Many

calls in the code might be using such symbols, so we simply reuse the old entries from the

constant pool if they already exist. We do this by creating an extra level of indirection that

points back into the constant pool itself).

The code snippet in Figure 3.6 shows the patches applied to these references. These

references are encoded as follows: (i) poolp indicates that this is a constant pool reference,

(ii) RT is the name of the pool being referenced, in this case RT means the runtime constant

pool (when we perform deserialization we load the serialized pool into memory separately)

and (iii) 2 is the offset index where the object lives inside the constant pool.

37

; For direct references

-%176 = getelementptr %R_bcstack_t, %R_bcstack_t* %171, i64 -1, i32 2

-%177 = load %struct.SEXPREC*, %struct.SEXPREC** %176, align 8

+%180 = load i32, i32* @poolp RT 2, align 4

+%185 = getelementptr %struct.SEXPREC*, %struct.SEXPREC** %184, i32 %180

+%186 = load %struct.SEXPREC*, %struct.SEXPREC** %185, align 8

; For named calls

-%PIRe0.26 = call %struct.SEXPREC* @createStubEnvironment(%struct.SEXPREC

* @ept_557fc7365380, i32 2, i32* @ept 442fc718f850, i32 1)

+%PIRe0.26 = call %struct.SEXPREC* @createStubEnvironment(%struct.SEXPREC

* @env_base, i32 2, i32* @poolp RT 104, i32 1)

Fig. 3.6: Figure showing patches applied to constant pool references.

In section 3.5, we discuss how the references to the RT (runtime constant pool) are

translated to reference a serialized pool.

3.4.4 Patching deoptimization reason

When a deoptimization occurs, we update the old value that was used for speculation

to a more generalized value to prevent deoptimization loops. For example, if a feedback

slot contained [int] and we compiled a function based on the assumption that the value

is of type int and later during execution, we find that the actual type was float, be-

fore deoptimizing we store the updated value [int, float] into the feedback slot so

that future compilations do not make the same assumption. This requires us to remember

the address where the feedback slot exists at runtime. Code snippet in Figure 3.7 shows

the memory address 94007299470432 being replaced with an equivalent hast reference

@"code NS:base:3206135521034569687 0".

38

-@"PIR%7.2" = private constant %DeoptReason <{ i32 5, i32 0, i8* inttoptr

(i64 94007299470432 to i8*) }>

+@"code_NS:base:3206135521034569687_0" = available_externally externally_

initialized global i8

+@"PIR%7.2" = private constant %DeoptReason <{ i32 5, i32 0, i8*

@"code NS:base:3206135521034569687 0" }>

Fig. 3.7: Figure showing patches applied to deoptimization reason object.

3.4.5 Patching deoptimization metadata

The deoptimization metadata contains information about the stack frames that need to be

collapsed and the locations in the code that the runtime needs to deoptimize to resume exe-

cution. Figure 3.8 implementation of this object; we simply new fields to allow referencing

which is relative to the hast.

1 struct FrameInfo {

2 Opcode* pc;

3 +uintptr t offset;

4 Code* code;

5 +char hast[1000];

6 +int index;

7 size_t stackSize;

8 bool inPromise;

9 };

10 struct DeoptMetadata {

11 FrameInfo frames[];

12 ... // method defs

13 };

Fig. 3.8: Code snippet showing the additional information stored in the Deoptimization Metadata.

39

0 1 2 3 4 5 ...

constant pool: RT

references

0 1 2 3 4 5 ...

serialized pool: 1335235

poolp RT 5

poolp 1335235 2

Fig. 3.10: Figure showing the process of patching the serialized pool references.

3.4.6 Patching references to the source pool

The code that is produced may reference objects in the source pool, which maintains

objects that may have a mutable set of attributes. Direct serialization of such objects can

result in unexpected GC behavior at runtime due to attributes not being set correctly post-

deserialization. To remedy this we replace these references to the source pool with equiva-

lent hast references so that references can be synced at runtime during deserialization.

-%"PIR%6.24" = call %struct.SEXPREC* @call(i64 -1, i8* %code, i32 10, %

struct.SEXPREC* inttoptr (i64 94007322315120 to %struct.SEXPREC*), %

struct.SEXPREC* %72, i64 1, i64 16399)

+%69 = load i32, i32* @"srcIdx GE:6812338248726832941 2", align 4

+%"PIR%6.24" = call %struct.SEXPREC* @call(i64 -1, i8* %code, i32 %69, %

struct.SEXPREC* inttoptr (i64 94007322315120 to %struct.SEXPREC*), %

struct.SEXPREC* %72, i64 1, i64 16399)

Fig. 3.9: Figure showing patches applied to source pool references.

3.5 Pool Patching

For R language object references that belong to the source pool we perform patching as

discussed previously (see Section 3.4.6), where we sync the references during deserializa-

tion. We perform the same for the object references that manage to slip into the constant

40

pool. After ensuring all objects that cannot be directly serialized are handled, we proceed

with the serialization of objects that still can be directly serialized. Figure 3.10 shows the

process by which the RT pool references are made relative to the serialized pool.

3.6 Summary

The chapter is focused on the challenges of serializing contextually-specialized binaries,

which refers to the process of converting program code and data into a serialized format

that can be easily transmitted, stored, and reconstructed later. The chapter analyzes the

design considerations required for developing a serializer capable of preserving specialized

binaries. Specialized binaries are binaries that are customized to specific runtimes and are

highly optimized for performance. Preserving specialized binaries during serialization is

essential because the loss of specialization can significantly impact the performance of the

deserialized code. The chapter describes the different components of the serializer, including

the AST hash, lowering patches, pool patches, and bitcode serialization.

The methodology for generating the unique identifier known as the hash of the AST is

outlined in detail. The hash of the AST is used to identify the program code and data during

serialization and deserialization. The chapter describes how the hash is generated and the

implementation specifics of the hash of the AST are also discussed, including the algorithm

used to generate the hash (see Section 3.3).

The chapter also discusses the types of patches used during bitcode serialization. Lower-

ing patches are used to transform the program code and data into a lower-level representation

that can be easily serialized. Pool patches are used to create a serialized pool that contains

all the necessary information for deserializing the program code and data. The methodology

for creating the serialized pool and generating references relative to it is explored in detail.

In summary, the chapter explores the challenges involved in serializing contextually spe-

cialized binaries and provides an exhaustive analysis of the design considerations required

for developing a serializer capable of preserving such binaries. The chapter also provides a

comprehensive overview of the system and its components, along with the methodology for

generating the AST hash, using lowering patches and creating the serialized pool.

41

42

Chapter 4

Offline Bitcode Analysis and Processing

In the second stage of our system, we process all the bitcodes and metadata collected

in the serializer stage. The serialized bitcodes cannot be used directly because for a given

function there can exist multiple binaries that are compiled under different contexts (includ-

ing both the first and second-level context). The performance during the deserialized run

depends on picking the most relevant binary, at each call site. Picking a very generic bi-

nary decreases the chances of deoptimization at the cost of performance, whereas picking

a very specialized binary may lead to a higher number of deoptimization events. Further,

at a call site to a given function, ideally, we should dispatch to the most relevant binary for

that function by closely matching the run-time context with the compilation context of the

binaries.

The above ideal scenario poses two major challenges. First, for each function, there

Function

b1 b2

b3 b4

bn...
b6

...

C1

C2

b1

b3

b2
b4

b11

Binaries

Classification based on

first-level context

...

Ci

FV1

b2

Classification based on

second-level context

FV2

b11

FV3

b4

b6

Binary
Reduction

Context
Masking Versioning

Feedback {1, 56, 11}f

Fig. 4.1: Overview of the OBAP stage.

43

may be many serialized binaries obtained under different compilation contexts. Second,

each context is a very large object, comprising not only the assumptions about arguments at

call sites but also the run-time feedback information used to optimize various parts of the

function. When we collect numerous binaries from different programs, the number of such

large contexts can rise exponentially. For example, it is not uncommon to observe hundreds

of contextual binaries for Ř functions, with each of them consisting of thousands of feedback

slots. In this section, we present novel strategies to reduce the number of binaries as well as

the size of the stored contexts, which ultimately leads to a very efficient dispatching scheme;

we name this reduction phase OBAP, for Offline Bitcode Analysis and Processing.

Figure 4.1 shows the crucial stages of our OBAP phase. The first stage classifies seri-

alized binaries on the basis of the first-level context (which is a set of predicates denoting

assumptions about the arguments [4]). After this classification, we employ an offline anal-

ysis pass to remove redundant binaries and perform context curbing; this leaves us with a

set of functionally unique binaries under each first-level context (see Section 4.2). We next

reduce this set further using function-feedback information as the second-level context, es-

sentially grouping the binaries with the same feedback together (see Section 4.3). We name

each group thus obtained as a feedback version.

However, owing to the possibly enormous number of feedback slots, dispatching based

on comparing the second-level context is usually not a practical solution. We solve this

problem by presenting a slot-selection algorithm that selects a small fixed-size set of relevant

feedback slots that can allow us to quickly compare the second-level context at run-time.

Finally, observe that after slot selection and feedback versioning, we may still be left with

a number of binaries under each feedback version. In order to dispatch to the most relevant

binary without having to perform arbitrarily many comparisons, we next present an ordering

strategy that arranges the binaries in a greedily optimal order (see Section 4.4).

4.1 Running Example

Let us consider the R code snippet for foo and its compiled rir bytecode shown in

Figure 4.2 (the various feedback slots generated by Ř are highlighted in red; also see Sec-

44

1 # R source
2 foo <- function(a, b, c=5) {
3 res <- 1
4 if (x) {
5 res = app1(res, b)
6 }
7 res = res + 1
8
9 return(app2(res, c))

10 }

rir bytecode
BB0:
0 push_ 1
5 visible_
6 stvar_cached_ res{0}
15 ldvar_cached_ x{1}
24 [<?>]

...

BB1:
40 ldfun_ app1
45 [0, <0>, valid]

...
72 call_ 2
89 [<?>]

...
BB2:
103 ldvar_cached_ res{0}
112 [<?>]

...
123 add_
124 [<?>]

...
138 ldfun_ app2
143 [0, <0>, valid]

...
170 call_ 2
187 [<?>]

...

Fig. 4.2: Code snippet showing the creation of feedback slots in rir bytecode.

tion 2.3 for more details). We see that bytecode for foo contains seven different feedback

slots which are initially empty. We will next look at how different runtime parameters affect

these feedback slots and their impact on the final compiled binary. As depicted Figure 4.3,

we call foo from four different executions as follows:

Program 1: x is bound to 1, app1 is bound to bitwXor and app2 is bound to

bitwShiftL. As the execution proceeds, the binding to app1 eventually changes

to fun1, following which the next call to foo (at Line 8) triggers a compilation.

Program 2: x is bound to FALSE and app1, app2 are bound to bitwShiftL.

The call to foo at line 6 triggers a compilation.

Program 3: x is bound to FALSE, app1 is bound to bitwShiftL and app2 is

bound to bitwXor. The call to foo at line 6 triggers a compilation.

Program 4: x is bound to 1, app1 is bound to fun2 and app2 is bound to

bitwShiftL. As the execution of proceeds, the binding to app1 eventually changes

to fun3, following which the next call to foo (at Line 8) triggers a compilation.

45

1 # Program 1
2 x = 1
3 app1 = bitwXor
4 app2 = bitwShiftL
5 foo(1, 10)
6 ...
7 app1 = fun1
8 foo(1, 10) # compile

1 # Program 2
2 x = FALSE
3 app1 = bitwShiftL
4 app2 = bitwShiftL
5 ...
6 foo(1, 1000) # compile

1 # Program 3
2 x = FALSE
3 app1 = bitwShiftL
4 app2 = bitwXor
5 ...
6 foo(1, 1) # compile

1 # Program 4
2 x = 1
3 app1 = fun2
4 app2 = bitwShiftL
5 foo(1, 10)
6 ...
7 app1 = fun3
8 foo(1, 10) # compile

Fig. 4.3: Code snippet showing different runtime contexts under which foo is called.

integer(s)b1
double(s)

value

bitwXor

2 targets

integer(s)

value
double(s)

bitwShiftL
integer(s)

1 targets

?
logical (s)

value

double(s)

value
double(s)

bitwShiftL
integer(s)

1 target

?

0 targets

?
logical (s)

value

double(s)

value
double(s)

bitwXor
integer(s)

1 target

?

0 targets

integer(s)
double(s)

value

integer(s)

value
double(s)

bitwShiftL
integer(s)

1 targets

(int, int),

,

,

,

Level 1 context Level 2 context

b2 (int, int)

b3 (int, int)

b4 (int, int)

fun1

fun2

2 targets

fun3

Fig. 4.4: Contextually specialized binaries obtained after performing serialization.

46

For all these executions, the serializer takes action to preserve both the compiled code

and the associated compilation context, this is depicted in Figure 4.4. During serialization,

the second-level context is obtained by traversing over the feedback slots in the function

bytecode and saving them into a vector1. The OBAP phase first classifies binaries based on

the first level context, in this example all the four binaries b1, b2, b3 and b4 belong to the

same call-site context ⟨int, int⟩, but they differ in their second-level context.

Feedback Version. Every compilation in Ř has a corresponding second-level context

which is also known as its feedback version. A second-level context is a list of feedback

values (see Figure 4.4). The second-level context and the feedback version for a compila-

tion are initially the same, but the feedback version may change after binary reduction and

context curbing. For our running example, this process is shown in Figure 4.9.

In Section 4.2, we show how redundancy is eliminated and the second-level context is

curbed. After this stage, Section 4.3 discusses how the slot selection algorithm is used to

obtain a small subset of the second-level context.

4.2 Binary Reduction

As part of our offline analysis, we first classify the set of binaries for a given function

into different groups based on the first-level context. Each resultant group contains a set of

binaries that can be dispatched if the first-level context at run-time is satisfied. After this,

the binary reduction phase identifies and removes functionally equivalent binaries from each

group. To do so, we compare the binaries using a combination of three program analyses:

(i) function weights (ii) breath-first call order; (iii) argument-effect analysis.

The algorithms presented for the given analysis were implemented for LLVM IR where

compiled function bodies are comprised of basic blocks, containing instructions that are

structured in a Single Static Assignment (SSA) format. The term RshFunction refers to an

instruction that calls a Ř builtin. Ř defines these built-in functions as a dynamically linked

library, enabling interaction between the compiled binary and the Ř runtime.

1For a given function, the number of feedback slots always remains constant. This is because the translation
from ASTs to rir bytecode is deterministic. This is usually the case in many non-optimizing/lightly-optimizing
compilers.

47

1 Function WEIGHTS (body)
2 BB← BBITERATOR(body);
3 res← 0;
4 while curr ← ∗BB do
5 for insn← curr[0] to curr[n] do
6 if insn.type == RshFunction then
7 res← res + rshFunctionWeight[insn.type];

8 curr← curr.next;

9 return res;

Fig. 4.5: Algorithm for function weights analysis.

(i) Function weights analysis. This analysis assigns different weights to the basic oper-

ations in a function body and sums them up. The weights of these operations are decided

based on their complexity. Operations such as forcing promises and function calls are given

higher weights as they may consist of side effects leading to failed speculation and de-

optimization. On the other hand, simple operations such as array lookups and arithmetic

operations are given lower weights. If two binaries differ in the function weights then they

are likely to be optimized differently.

Figure 4.5 provides detailed information about the implementation of this analysis. The

analysis takes the function body as input. Line 5 iterates over all the instructions inside each

basic block (BBIterator function is used to get the starting basic-block address). If an

instruction calls a Ř specific builtin, the predefined weight for that builtin is obtained from

the rshFunctionWeight map (see Line 7). The resulting weights are accumulated in the

variable res, and the final result is returned.

To establish similarity under this analysis, the final result (res, which is an unsigned

integer) must be equal.

(ii) Level-wise call-order analysis. The change in the order in which different operations

are performed indicates that the control flow of the program might have changed. Hence, in

this analysis, our objective is to summarize the order in which functions are called at differ-

ent levels in the control flow graph. Our call-order analysis traverses the control-flow graph

(CFG) of an LLVM-bitcode function in a breadth-first order and lists the set of functions

called at each level. We ignore the back edges in the CFG as small changes in the control

48

1 Function LEVELWISECALLORDER (body)
2 BB← BBITERATOR(body);
3 res← new Vector<Set< RshFunction >>;
4 workingLevel← 0;
5 curr← new Set< RshFunction >;
6 callback← Function (bb, level)
7 if workingLevel , level then
8 workingLevel← level;
9 res.push(curr);

10 curr← new Set< RshFunction >;

11 for insn← bb[0] to bb[n] do
12 if insn.type == RshFunction then
13 curr.push(insn)

14 BBBREATHFIRSTITERATOR(BB, callback);
15 return res;

Fig. 4.6: Algorithm for breath first call order analysis.

flow can be missed if the nodes are merged.

Figure 4.6 provides a detailed implementation of this analysis. The basic blocks of body

are iterated in a breadth-first order using the BBBreathFirstIterator function (see

Line 14). This function takes two inputs: the starting basic block BB (which is the first basic

block where control enters when the function is called; BBIterator function is used) and

a callback function. The callback function is invoked every time a basic block is visited. It is

provided with bb (the current basic block) and the level (or distance) of the basic block from

the starting basic block (see Line 6). Within the algorithm, two local variables, workingLevel

and curr, are used to keep track of the last processed level and the set of Ř operations seen

at that level, respectively. When the callback function is called, the algorithm first checks if

the current level is the same as the last processed level. If they are different, the results of

the previous level are stored in the final res vector (see Line 9), and workingLevel and curr

are reset (see Line 8 and Line 10). If the last processed level is the same as the current level

in the callback, the algorithm iterates over the instructions of the basic block and adds all

RshFunction instructions to the curr set (see Line 13). Finally, the final result is stored in

the res vector, which contains the set of RshFunction calls at each level.

To establish similarity under this analysis, the resultant vectors must be of the same size

49

1 Function ARGEFFECTANALYSIS (body)
2 BB← BBITERATOR(body);
3 args← GETARGUMENTSLOADEDFROMSTACK(body);
4 argImpact← new Map<Instruction, Set<Instruction>>;
5 for arg← args[0] to args[n] do
6 impact← GETIMPACT(arg);
7 argImpact.put(arg, impact);

8 res← new Map<Instruction, Vector<Set< RshFunction >>>;
9 for e← argImpact[0] to argImpact[n] do

10 arg← e. f irst;
11 impact← e.second;
12 r← new Vector<Set< RshFunction >>;
13 workingLevel← 0;
14 curr← new Set< RshFunction >;
15 callback← Function (bb, level)
16 if workingLevel , level then
17 workingLevel← level;
18 r.push(curr);
19 curr← new Set< RshFunction >;

20 for insn← bb[0] to bb[n] do
21 if insn.type == RshFunction ∧ impact.includes(insn) then
22 curr.push(insn)

23 BBBREATHFIRSTITERATOR(BB, callback);
24 res[arg]← r;

25 return res;

Fig. 4.7: Algorithm for argument effect analysis.

and the set of operations performed at each level must be equivalent.

(iii) Argument-effect analysis. This analysis is used to measure the impact of the call-site

predicates that were assumed for the different arguments, as part of the first-level context

for a given function. For instance, consider two first-level contexts C1 and C2. Suppose

C1 records the predicate “argument X is an integer” while C2 records the more precise

predicate “argument X is a non-lazy integer”. If in the binaries compiled under C1 and

C2, the operations related to argument X are identical, then we can infer that the additional

precision in C2 was not beneficial. Consequently, we can deprecate C2 in favour of C1. We

determine this similarity by traversing the use-def chains for each argument in a breadth-first

order and summarizing the set of operations performed at each level.

Figure 4.7 provides a detailed implementation of this analysis. Initially, the arguments

50

loaded from the stack are determined using the GetArgumentsLoadedFromStack

function (see Line 3), which returns a list of instructions directly loading values from the

argument stack. Next, we iterate over this list (see Line 5) and recursively find all the in-

structions impacted by each arg. The GetImpact function (see Line 6) is utilized for

this purpose, leveraging use-def chains to identify all impacted instructions starting from

arg. The results are stored in the argImpact[] map (see Line 4), which maps each argument

to the set of affected instructions. For each argument, a level-wise call-order analysis is

performed (as discussed in the previous analysis), while ensuring that only the instructions

belonging to the set of impacted instructions for that argument are included (see Line 21).

The obtained level-wise result for each argument is then stored in the res map (see Line 24),

which maps the argument (loaded from the stack) to its level-wise call-order summary with

respect to the instructions it affects.

To establish similarity under this analysis, the resultant map must contain the same keys

(i.e. the same set of arguments must be loaded from the stack) and the level-wise call-order

summaries must be identical.

For the binary reduction phase, we use the results of the above three analyses as follows:

Given a function, we first calculate the analysis results for all its binaries and then perform

a pairwise
(

n
2

)
comparison for the same. When comparing a pair of binaries, we use a strict

criterion that requires that they compare equally under all three analyses mentioned above.

This strict deprecation criterion ensures that functionally unique binaries remain intact while

mostly identical binaries get deprecated.

Context curbing. The similar binaries obtained above, however, cannot be directly dep-

recated. For example, in Figure 4.8 we see that b1 and b4 are identified to be similar (in

cases where there are multiple potential targets for a call, the compiler generates generic

code that is valid for all targets, rather than optimizing specifically for a single call site).

In such cases, as part of OBAP, we pick one of the binaries and deprecate the rest. Before

deprecation, however, the redundancy in the second-level context is identified and removed

by context curbing. We identify the common part of the second-level context and “mask”

the part of the context that differs. We use this mask to dispatch the representative binary

for all three contexts while ensuring that we do not end up recompiling for a previously

51

integer(s)b1
double(s)

value

bitwXor

2 targets

integer(s)

value
double(s)

bitwShiftL
integer(s)

1 targets

integer(s)
double(s)

value

integer(s)

value
double(s)

bitwShiftL
integer(s)

1 targets

(int, int),

,b4 (int, int)

fun1

fun2

2 targets

fun3

integer(s)b1
double(s)

value

integer(s)

value
double(s)

bitwShiftL
integer(s)

1 targets
(int, int),

Fig. 4.8: Second-level context curbing.

deprecated context. Overall, though our strategies to identify similar binaries use simple

program analyses as described above, we see in Chapter 6 that the reduction achieved due

to the same is quite impactful in establishing the viability of our serialization approach for

large programs.

4.3 Feedback Versioning

JIT compilers rely heavily upon the run-time feedback information to perform optimiza-

tions. This run-time feedback is collected at different crucial points during program ex-

ecution, such as the types observed for loaded variables, call-site targets, and branching

information, and recorded in feedback slots. Ideally, in order to obtain the most relevant bi-

nary for a function at a given call site, we should compare the run-time context with not only

the call-site predicates but also all the feedback slots for that function. In the feedback ver-

sioning stage, we start with a set of functionally unique binaries for each first-level context

and aim to classify them using a second-level feedback context such that they can be dis-

patched efficiently. We facilitate this by classifying the binaries into groups compiled under

the same feedback information and calling each unique group a feedback version. However,

in Ř, we have observed that the number of feedback slots for typical programs may vary

from a few tens to even a few thousand, which poses a serious challenge to the dispatch

overhead that may be incurred using such a scheme. In order to address this problem, we

next present a simple backtracking-based algorithm that can find the relevant feedback slots

52

for comparing the second-level context for each binary. Our goal is to select a small, limited

subset of feedback slots that can be used to efficiently distinguish and dispatch the relevant

feedback version at run-time.

Slot Selection. We model the problem of finding a small subset of relevant feedback

slots as a graph reduction problem. Each node in this graph represents a unique second-

level context/function feedback vector, as described in Section 4.1, and is referred to as a

Feedback Version (FV). Each labeled edge represents a feedback slot index, we draw an edge

between two nodes if the values contained in the FV at that index differ. Figure 4.9 depicts

an edge (index 5) connecting FV2 and FV3, attributed to their inclusion of bitwShiftL

and bitwXor values, respectively. We refer to this set of differing indices among two FVs

as the diffset. Our goal is to use a set of operations to reduce the graph in a way such that

all the nodes become disconnected. The slot selection algorithm described in Figure 4.10 is

used to reduce this graph. The inputs given to the algorithm are as follows.

• wl: It is initialized as a set of
(

n
2

)
pairings of all the FV’s in the graph.

• sol: It initialized as an empty set that holds the currently selected edges.

• BUDGET: It is the maximum size of the desired solution (or the maximum number of

slots that can be compared at runtime).

• FinalSol: It is initialized as an empty that holds the final solution.

Figure 4.9 shows an end-to-end example of all the operations performed in OBAP. We

continue with the program discussed in the running example (see Section 4.1). We start with

four binaries (b1, b2, b3, b4) compiled under four unique second-level contexts (each unique

value contained in the second-level context is shaded with a different color). The first stage

of OBAP performs binary reduction which identifies b1 and b4 to be similar. Following this,

the differing slot at index 1 is masked and a new curbed context representing both b1 and

b4 is created. This reduced set is provided to the slot selection stage. Let us now solve the

obtained graph using the algorithm described in Figure 4.10. The first two lines check if the

solution exceeds the allocated budget and if so, returns false. Line 4 checks the graph for

trivial solutions that might exist in the graph. In the given graph we see that edge 5 is the only

53

b1

?

0 targets

1 target

b2

b3

b4

fun1

fun2

2 targets

fun3

double(s)

value

double(s)

value

integer(s)

0 1 2 3 4 5 6

integer(s)

integer(s)

integer(s)
bitwShiftL

1 targets

bitwShiftL

1 targets

bitwShiftL

1 targets

bitwXor

double(s)

value

double(s)

value

integer(s)

value

integer(s)

value
integer(s)

integer(s)

logical (s)

value

logical (s)

value

?

?
?

0 targets

double(s)

double(s)

double(s)

double(s)

bitwXor

2 targets

b1, b4

?

0 targets

1 target

b2

b3

double(s)

value
integer(s)

integer(s)

integer(s)

bitwShiftL

1 targets

bitwShiftL

1 targets

bitwXor

double(s)

value

double(s)

value

integer(s)

value
integer(s)

logical (s)

value

logical (s)

value

?

?
?

0 targets

double(s)

double(s)

double(s)

Binary Reduction Redundant slots

FV1

FV2

FV3

FV1 FV2

FV3

0,2,3

0,2,3,5 5

FV1 FV2

FV3

0,2,3

0,2,3,5 5
5

trivial

FV1 FV2

FV3

0,2,3

wl = {(1, 2), (1, 3), (2, 3)}
sol = {}

wl = {(1, 2)}
sol = {5}

wl = {}
sol = {5, 0}

0

b1, b4
bitwShiftL

1 targets

bitwShiftL

1 targets

double(s)

value

logical (s)

value

0 5

b2 0 5

b3 0 5
logical (s)

value 1 target

bitwXor

Slot Selection

Final result

Fig. 4.9: Example to demonstrate slot selection.

54

edge that exists between FV2 to FV3 (in order to be able to distinguish between FV2 and

FV3 we will always need to include 5, hence this is a trivial solution). This step adds all such

trivial solutions to the triv.sol and then for all other occurrences of this edge in the graph, it

removes all the connecting edges between the nodes that contain this edge. The addition of 5

to the solution set leads to the removal of all the edges between (FV2, FV3) and (FV1, FV3)

(as edge 5 is also contained in the set of edges connecting FV1 and FV3). When no edges

are connecting two nodes directly, we remove its entry from the worklist; hence the entries

(1,3) and (2,3) are removed. We then store this reduced worklist into triv.wl. Line 5-7

checks if the updated worklist is empty and if so, the global variable FinalSol is updated with

the obtained solution. Line 7 calls the function getDiffUnion which returns a union of

all the remaining edges in the updated worklist; this is stored in the variable rDiff. In the

given example, this operation returns {0,2,3}, which are the edges that still exist between

the reduced worklist entries i.e. (1,2). Line 9 calls the function sortByReduction,

which sorts the edges by the number of reductions they perform on the worklist and stores

it into the sDiff; in this case we get {0,2,3}. We sort the values in descending order

based on the number of reductions they perform. Line 10-11 iterate over all the combina-

tions of sDiff as follows, if sDiff contains {v1, v2, .., vn} COMBINATIONS(sDiff) results in

{{v1}, {v2}, .., {v1, v2}, {v1, v3}, ..., {v1, v3, vn}}. This ensures that the solutions with the highest

number of reductions are selected first. Line 12 creates a new set tsol that contains the union

of triv.sol (currently selected solutions) and c (current set of solutions yet to be checked).

Finally, in Lines 13-15 we recursively try new solutions to reduce the graph. When the al-

gorithm completes, we are left with the solution {5, 0}. Thus values at these indices get are

tagged to the binaries and made available in the final repository.

4.4 Level-2 Collisions

After we classify the binaries based on their second-level context, in a few cases, mul-

tiple binaries may be left under the same feedback version. We attribute this to two main

possibilities: (i) The binary reduction analysis was unable to identify similarity in otherwise

similar binaries. (ii) The binaries differ inside the body of inlined functions, which are not

55

1 Function SOLVE (wl, sol)
2 if sol > BUDGET then
3 return f alse;

4 triv← SOLVETRIVIAL(wl, sol);
5 if triv.wl == 0 then
6 FinalS ol← triv.wl;
7 return triv.sol <= BUDGET

8 rDi f f ← GETDIFFUNION(triv.wl);
9 sDi f f ← SORTBYREDUCTION(rDi f f , triv.wl);

10 combi← COMBINATIONS(sDi f f);
11 for c← combi[0] to combi[n] do
12 tsol← triv.sol ∪ c;
13 if tsol <= BUDGET then
14 if SOLVE(triv.wl, tsol) then
15 return true;

16 return f alse;

Fig. 4.10: Slot selection algorithm.

covered by the first or second-level contexts.

To have a complete specification of the L2 dispatch mechanism, we must specify which

binary should be chosen in these cases. In the first case, which happens when the binary

reduction fails, the choice does not matter because the binaries have equivalent behaviour.

The difficult case is the second one when the definition of two-level context was not powerful

enough to distinguish between different binaries. To give a concrete example of how this

can happen, suppose that we have a function f that inlines g. The second level context can

tell the difference between binaries for f that invoke g and ones that don’t because f has

feedback slots that record the callees of all function calls in its body. However, in those

cases where g is inlined then the feedback slots of f don’t tell anything about the parts of the

compiled binary that come from the inlined body of g. This limitation happens because we

record the feedback during the bytecode interpretation phase, which is before any inlining

has taken place. If we end up with multiple versions of f that are completely identical except

that they inlined different versions of g, then we will not be able to tell the difference based

on the feedback slots for f . Perhaps it might have been possible to design a more complex

level-2 context that took into account the feedback slots of the inlined function. However,

we have not pursued this avenue because in our experiments we found that L2 collisions

56

were fairly rare, happening in less than 2% of L2 contexts. Instead, we make an educated

guess and hope for the best.

When we make this choice there are two ways to get it wrong, as we have discussed

in the Introduction. If we pick a binary that is too specific then it may hit a JIT guard and

deoptimize to a more general version. Conversely, if we pick a binary that is too general then

we might have worse steady-state performance than a more specific binary. In this work, we

have opted to err toward the more specific binaries, to preserve steady-state performance.

First, we filter out all the binaries that don’t satisfy their requirement map. If the current

code versions in the running environment are not compatible with the requirements listed in

the requirement map then that binary was not eligible to be picked in the first place. Then,

among the binaries that satisfy all their requirements, we choose the one that has the largest

requirement map. The idea behind this is that each entry in the requirement map refers to

a speculative optimization made by the JIT compiler. Therefore, we expect that binaries

with a larger requirement map will be more optimized and more specific than binaries with

a smaller requirement map.

4.5 Summary

In this chapter, we delve into the complexities involved in analyzing and processing

serialized code repositories. After the serialization process, the resulting repository is not

immediately usable and requires several stages of processing through the OBAP. The pri-

mary objective of the OBAP is to transform the raw repository into a refined, trimmed-down

version, free from redundant functions and equipped with essential metadata required for the

dispatcher. The OBAP operates at a high level by first classifying function binaries based

on their first-level context i.e. the call-site context. This is followed by a process of binary

reduction and context masking. Finally, the remaining functions are classified based on their

second-level context, and feedback versioning is applied. To aid in understanding the con-

cepts covered in this chapter, we have included a real-world example. During the binary

reduction stage, three program analysis techniques are employed on the LLVM bitcode to

identify and classify functions based on their similarity. Once similar functions have been

57

identified, the context masking technique is applied to refine the analysis further.

Context masking helps to isolate the relevant context for each function by removing any

irrelevant or redundant data from the context. This ensures that irrelevant parts of contexts

are not selected for dispatch in the future. After the context masking stage, the remaining

functionally unique binaries are further classified based on their second level of context.

These classifications are referred to as Feedback Versions (FVs). To allow for efficient

dispatching, we employ a slot selection algorithm to identify a relevant subset of context

that can effectively distinguish between the various FVs. This selection process is crucial

for achieving optimal performance during the dispatching phase.

Overall, this comprehensive approach to repository optimization ensures that the result-

ing repository is both lean and effective, making it suitable for use in the runtime.

58

59

Chapter 5

Deserializer and L2 Dispatcher

In this chapter, we discuss the Deserializer, the third and final stage of our system. It fea-

tures an efficient two-level (L2) dispatcher that, at a given call site, selects the most relevant

binary based on the run-time feedback for the function arguments as well as the internal

feedback slots. Maintaining a code cache that stores code versions requires an efficient

mechanism to support it. To develop this mechanism, we must consider the following.

1. Loading everything at once vs loading things incrementally.

Loading everything at once (i.e. the entire serialized code repository) has its advan-

tages (i) Access to disk happens only once, which means during deserialization the

additional step of loading the serialized pool, the serialized binary does not take any

extra time. (ii) Much simpler in implementation. However, this also comes with dis-

Curbed
repository

General

Worklist

Bytecode

Compiler

1. Load Metadata

binaries and pool

Deserializer

2. Load/Link

functioni

Dispatch

3. Insert

Ř Runtime

Table

Unlocking

Worklist

wait unlock

Fig. 5.1: Overview of the Deserializer stage.

60

advantages that make it unsuitable for our use case (i) The repository can be huge and

loading everything at once will consume considerable memory (might not even be

feasible in some cases). (ii) Loading unnecessary functions that we don’t use simply

wastes valuable resources.

2. What to do in case of a new second-level context at runtime?

When we encounter a new second-level context (i.e. a context that has not been seri-

alized and added to the repository in the past), we can either dispatch a saved version

that matches the runtime context partly and hope it dispatches successfully or we can

let the JIT handle the new context with a new compilation. Although the first approach

may seem appealing, it could result in disabling a binary that could be useful in the

future if dispatch fails. Therefore, it may be wise to consider alternative approaches

that would not permanently disable the binary. A function can go through multiple

phases at runtime, and the main aim of our dispatcher is to select the most precise

binary for the phases that have already been seen.

3. When to resolve the references in the deserialized code?

When we deserialize code, we can eagerly patch all the references inside it so that

whenever the binary gets loaded into the runtime it is ready to be dispatched, or we

can do so lazily as well i.e. we could resolve the references upon the first call to the

function. The first approach is simpler but likely to suffer from unexpected slowdowns

(although not as noticeable as JIT compilation, still significant). Therefore, we opt for

the second approach as it not only saves us time during deserialization but also allows

the deserialized code to be available dynamically as needed. Since not all parts of the

deserialized code might be immediately needed, compiling only what is needed helps

reduce unexpected slowdowns in the runtime.

Figure 5.1 shows the high-level operations that get performed during runtime in this

stage. First, the runtime loads all the metadata from the code repository into the runtime,

which is stored into a general worklist. When the runtime encounters a new function, it

checks the general worklist and tries to load/link the associated binaries. If the dependencies

61

Curbed
repository

hast1 : {Ca, Cb, [hast2]},

{Ca, Cd, []}

[

]
{Ca, Cc, [hast2, hast3]},

hasti : ...

General Worklist

hast(funx) := hast1

Unlocking Worklist

hast1 : {Ca, Cb, [hast2]},

{Ca, Cd, []}

[

]
{Ca, Cc, [hast2, hast3]},

hasti : ...

General Worklist Unlocking Worklist

hast2 : [{Ca, Cb,1},
{Ca, Cc,2}]

hast3 : [{Ca, Cc,2}]

hast(funy) := hast3

General Worklist Unlocking Worklist

hast2 : [{Ca, Cb,1},
{Ca, Cc,1}]

hast3 : [{Ca, Cc,1}]

No entry in General Worklist

hast(funy) := hast2

General Worklist Unlocking Worklist

hast2 : [{Ca, Cb,0},
{Ca, Cc,0}]

No entry in General Worklist

(2) Bytecode Compiler

(3) Bytecode Compiler

(4) Bytecode Compiler

(1) Start Runtime

Fig. 5.2: Overview of the Deserializer stage.

are already satisfied or empty, we load/link them immediately and add them to the function

dispatch table, otherwise, we add them to the unlocking worklist. The next Section 5.1

discusses the working of this process in detail.

5.1 Deserializer

In order to understand the process by which the binaries are loaded into the runtime,

let us consider the example shown in Figure 5.2. As the first step, the deserializer phase

starts by loading all the metadata about the serialized binaries that were prepared during

the OBAP phase. This metadata contains information about the different function versions

62

and their corresponding dependencies. We then add this metadata to a general worklist,

which is a mapping from a function hast (a unique identifier generated for each function, see

Section 3.3) to the binary metadata, as shown in Figure 5.2 (1). When a function is compiled

to bytecode, we compute its hast. We then use that hast to look into the general worklist

and check if any serialized binaries are available, as shown in Figure 5.2 (2). If serialized

binaries exist, the linker tries to load them. Loading all the serialized binaries, however,

is not always possible at this point in time, as some binaries may have dependencies that

have not yet been satisfied. To accommodate this, an unlocking worklist is created, which

maintains an inverse mapping from the dependencies to the list of binaries that are waiting

for the dependency. All the binaries in this worklist maintain a counter that is decremented

whenever a dependency is satisfied. When a new bytecode is compiled (see Figure 5.2

(3)), after processing the general worklist, the unlocking worklist is checked. If this new

compilation resolves the dependencies for some binary it is loaded into the runtime. At this

point, the serialized pool is synced with the runtime, and the bytecode is loaded into the

appropriate dispatch table. However, we delay the final patching of the binary until the first

call to the function is made, ensuring that we do not end up spending time patching binaries

that will not be used immediately.

5.2 Patching

When a function is loaded into the runtime by the deserializer, it remains unpatched

until it is called for the first time. This process is commonly referred to as lazy patching, and

Figure 5.3 illustrates how the runtime handles this. During the deserialization process, the

function initially contains an address pointing to the module that holds the LLVM bitcodes.

However, the function itself is not immediately executable. Upon the first invocation of

the function, all the necessary indirections are patched, and LLVM generates an executable

code. This executable replaces the original stub address, allowing subsequent calls to the

function to directly access the compiled executable. In summary, the deserializer loads

a function in an unpatched state, and when the function is called for the first time, the

necessary patching and executable generation occur, resulting in subsequent calls directly

63

Function Binary

1) get native

2) executable

First call to f

Subsequent calls to f

Function Stub Native Code

1) get native 2) patch symbols

Compiler

3) replace stub4) executable

call

call

Fig. 5.3: Overview of the patching stage.

invoking the compiled executable.

In this section, we address the resolution of the indirections introduced in Chapter 3 into

runtime addresses. The patching process is responsible for identifying the type of indirec-

tion based on the prefix (see Section 3.4). We outline the different types of indirections as

follows:

1. Direct References: These indirections are replaced with the current runtime address

(see Section 3.4.1).

2. Hast References: The reference is substituted with the corresponding runtime clo-

sure. The runtime maintains a hash map that maps from the hast value to the closure

address.

3. Pool References: References that were relative to the serialized pool are transformed

to reflect the deserialized pool. When the deserializer loads the serialized pool into the

runtime, it is placed at a specific offset in the runtime pool. As a result, all references

to the serialized pool need to incorporate this offset to obtain the final index.

5.3 L2 Dispatcher

In this section, we detail the second-level (L2) dispatcher; see Figure 5.4. When a deseri-

alized binary is linked, a new L2 dispatcher is created for the first-level context in which the

64

Level one

C1

C2

C3

C4

C5

fallback

fun1 fun2 fun3 fun4

ldvar cached a1

[double (s)]

[double()]

call

ldvar tmp

[]

ldfun g

[cls1]

...

[double()]

call

...

RIR bytecode

FB1 FB1FB3 FB2Call to f

Dispatch table

Dispatch order

Level two
Dispatch table

feedback slot pointers

function list

Fig. 5.4: Overview of the L2 Dispatcher.

binary was compiled. This L2 dispatch table is then inserted into a slot in the first-level dis-

patcher based on the first-level context of the binary. We maintain a fixed number of pointers

to different feedback slots of the function, which are used to compare the second-level con-

text of binaries in the L2 dispatcher. Our implementation of the L2 dispatcher consists of

three main parts: (i) function list; (ii) feedback slot pointers; and (iii) fallback function. The

function list is a dynamically growing array that stores the function binaries. This list is ini-

tially empty and gets populated as the dependencies of the serialized binaries are satisfied.

The feedback slot pointer is a fixed-size list that contains pointers to the relevant feedback

slots of the function. The fallback function is a placeholder that is initially empty but can

store new JIT compilations in case a new runtime context is observed for the function. This

allows the JIT to fall back to existing operations until a suitable run-time context that can be

used for dispatching emerges.

We now describe the various operations that are performed on the L2 dispatch table:

(i) Create. A new L2 dispatch table is inserted into the existing first-level context dis-

patcher. When inserting the L2 dispatch table there are two possible cases: (a) The slot at

which the L2 dispatcher is to be inserted is an empty slot; in this case, we create a new L2

dispatcher and set the fallback to a dummy function; (b) The slot at which the L2 dispatcher

is to be inserted already contains a JIT-compiled function; in this case, we create a new L2

dispatcher and set the fallback to the existing function. The newly created L2 dispatch ta-

ble is then inserted into the corresponding first-level context slot. Also, during the creation

of a new L2 dispatcher, the relevant feedback slot pointers are also updated to point to the

65

relevant feedback slots in the function.

(ii) Insert. The insert operation inserts newly linked deserialized binaries into the func-

tion list whereas the JIT compiled functions are inserted as fallback function slot which is

stored separately from the function list.

(iii) Dispatch. The dispatch operation iterates over the function list in the reverse order

and dispatches to the first matched binary, i.e., the function feedback matches the run-time

feedback and the function is not disabled (a function is disabled if a previous execution of

the function resulted in a deoptimization).

(iv) Deoptimization policy. In case a binary dispatched by the L2 dispatcher deoptimizes

we disable that binary and remove it from the function list.

5.4 Summary

This chapter provides an in-depth exploration of the deserializer phase of the imple-

mentation. The deserializer is a critical component of the system, responsible for converting

serialized data into a format that can be processed by the system. To facilitate a thorough un-

derstanding of the deserializer phase, we begin by presenting a block diagram that illustrates

its runtime operation and high-level operations. We then delve into the internal workings of

the deserializer, where we discuss the general worklist, unlocking worklist, loading, and

linking processes.

The general worklist is a critical component of the deserialization process, responsible

for holding the mapping from function hash to the corresponding metadata. When the rir

bytecode compiler encounters a function, it checks the general worklist to determine if there

are any binaries available for deserialization. If the dependencies required for deserialization

are satisfied, the function and its associated serialized pool are sent to the load/link process.

The load/link process then takes care of loading the binaries into the runtime and inserting

the deserialized binary into the function dispatch table. If the dependencies are not yet

satisfied, the function and its associated serialized pool are put into the unlocking worklist.

The unlocking worklist contains an inverse mapping from the dependency to the binary that

needs to be deserialized. When all dependencies are satisfied, the unlocking process sends

66

the corresponding binary to the load/link process for deserialization. Once deserialized, the

binary is added to the function dispatch table, making it available for use by the system.

The L2 dispatcher is a crucial component of the deserialization process, responsible for

managing and dispatching the deserialized binaries to their respective execution contexts. It

consists of three main components: the function list, pointer to feedback slots, and fallback

slot for handling new contexts. This chapter provides a detailed exploration of the various

operations involved in managing the L2 dispatcher, including creation, insertion, dispatch,

and deoptimization policy. By carefully managing these operations, the L2 dispatcher en-

sures that the system can efficiently and effectively execute the deserialized binaries. Ad-

ditionally, we examine the fallback slot and its importance in handling new contexts and

preventing overgeneralization.

Overall, this chapter highlights the complexity and importance of the deserializer phase

within the larger system architecture. It demonstrates the careful planning and execution

required to ensure efficient and reliable deserialization and provides a foundation for future

development and refinement of the system. Through our exploration of the deserializer

phase, we hope to contribute to the broader discourse on system design and optimization

and inspire further research in this area.

67

68

Chapter 6

Evaluation

Our primary goal is to preserve the benefits of just-in-time compilation while reducing

the associated costs that come along with the same. JIT compilers often suffer from slow

warmup times and unexpected slowdowns due to late-stage compilations. We evaluate this

by comparing the performance profiles of programs with and without our scheme, focus-

ing particularly on the time spent towards JIT compilation. On the other hand, the major

challenge associated with a scheme that tries to reuse previous compilations is to obtain the

additional advantages offered by the profiling feedback gained during runtime. We evaluate

this goal by computing the impact with and without our two-level dispatch scheme. Further,

as facilitating such a two-level contextual dispatch might lead to the problem of code bloat

and context explosion, we show that our offline analysis passes can effectively get rid of the

binaries that are functionally equivalent. Throughout the discussion, we also highlight sev-

eral subtle aspects of our scheme with interesting case studies. Keeping in mind our stated

goals, we next validate the research questions discussed in Section 1.2.

6.1 Experimental Setup

For our experiments, we use the benchmarks that come with Ř [5] and three real-world

programs. RMarkdown is a document processing application that imports many R libraries

for plotting and data analysis [12]. It is not computationally intensive but it does stress

the compiler by loading substantial amounts of code. Raytracer is a more computational

69

benchmark with significant phase chages [13]. Lastly, we experiment with an R library

from the CRAN repository, Recommenderlab [14], for which we run the library’s examples

included in it. Additionally, we use a unit-test generator called genthat [15] that allows us to

demonstrate our handling of context explosion.

Experiments are run on a dedicated benchmark machine which features an i7-12700

CPU with speedstep and SMT disabled, stepping 2, microcode 0x1f, 16 GB of RAM, and

Ubuntu 20.04 on 5.14.0-1051-OEM Linux Kernel. The experiments are built on Ubuntu

20.04.1 based containers and executed on Docker runtime 20.10.12. To reduce background

noise, the setup uses the core shielding feature from cpuset to run the Docker containers in

reserved CPU cores. We also store intermediate results in a 2 GB in-memory filesystem, in

order to reduce I/O fluctuations.

6.2 Compilation Time and Peak Performance

In this section, we measure the per iteration speed-up of our implementation, Řbc, named

after the LLVM bitcodes in its code repository. We compare it against the default Ř, which

uses traditional contextual dispatch. In this experiment, a harness executed each benchmark

program 15 times with predetermined inputs, enabling measurement of warmup and steady-

state performance.

Figure 6.1 compares the per iteration times taken by Řbc and Ř in each of the 15 itera-

tions. For brevity, we have chosen a subset of programs that represent all kinds of interesting

cases from the RBenchmarking suite. In general, Řbc is much faster in the first iterations than

baseline Ř. We attribute this efficiency to (i) the reduced number of compilations; (ii) the re-

duction in the number of bitcode binaries to be loaded (due to OBAP); (iii) additional LLVM

passes that we run offline to optimize the serialized binaries; and (iv) an efficient two-level

dispatch implementation. We now discuss the kinds of warmup improvements observed for

different classes of programs:

1. Significantly faster warmup: In programs such as binarytrees, flexclust no s4, knu-

cleotide, pidigits, and spectralnorm, where computation is not limited within one hot

loop, the deserializer is able to incrementally link binaries as they become available,

70

0

1000

2000

3000

4000

4 8 12
Iteration

T
im

e
(m

s)

binarytrees

0

1000

2000

3000

4000

4 8 12
Iteration

T
im

e
(m

s)

binarytrees_2

1000

1500

2000

2500

4 8 12
Iteration

T
im

e
(m

s)

Bounce

500

1000

1500

4 8 12
Iteration

T
im

e
(m

s)

Bounce_nonames

2500

5000

7500

10000

4 8 12
Iteration

T
im

e
(m

s)

convolution_slow

1000

2000

3000

4000

4 8 12
Iteration

T
im

e
(m

s)

fannkuchredux

1500

2000

2500

3000

3500

4 8 12
Iteration

T
im

e
(m

s)

fastaredux

15000

20000

25000

30000

4 8 12
Iteration

T
im

e
(m

s)

flexclust

10000

12500

15000

17500

20000

22500

4 8 12
Iteration

T
im

e
(m

s)

flexclust_no_s4

1000

2000

3000

4000

5000

4 8 12
Iteration

T
im

e
(m

s)

knucleotide

0

1000

2000

3000

4000

5000

4 8 12
Iteration

T
im

e
(m

s)

Mandelbrot

1000

1500

2000

2500

4 8 12
Iteration

T
im

e
(m

s)

nbody

1250

1500

1750

2000

4 8 12
Iteration

T
im

e
(m

s)

nbody_naive_2

0

10000

20000

30000

4 8 12
Iteration

T
im

e
(m

s)

pidigits

4000

5000

4 8 12
Iteration

T
im

e
(m

s)

regexdna

1250

1500

1750

2000

4 8 12
Iteration

T
im

e
(m

s)

reversecomplement

0

1000

2000

3000

4000

4 8 12
Iteration

T
im

e
(m

s)

spectralnorm

25000

27500

30000

32500

4 8 12
Iteration

T
im

e
(m

s)

volcano

Fig. 6.1: Figure comparing Řbc (red line) with Ř (green line) for the first 15 iterations of benchmark
programs. A representative subset of 18 programs from the RBenchmarking suite are shown.

71

thus leading to improved runtimes starting from the first iteration itself.

2. One iteration warmup: In programs such as fannkuchredux and Mandelbrot, peak

performance is dependent on a few critical functions that only get linked after the first

iteration, due to which the serialized binaries for those functions can only be executed

starting the next iteration. Consequently, though Řbc starts similar to Ř (that is, in the

interpreter), it quickly reaches a steady state as soon as the linking dependencies are

satisfied.

3. No recompilation pauses: In nbody naive 2, Ř triggers additional compilation to oc-

cur at iteration 9. This is based on a non-deterministic JIT heuristic that performs

these compilations based on the execution time of those functions. On the other hand,

as the corresponding binary is already available as well as ready for linking, Řbc is

able to avoid the slowdown and immediately able to dispatch to the same.

4. Almost zero compilation: In numerous programs, the number of compilations have

been reduced to zero; while the remaining compilations have become a fraction of

their previous values (see Figure 6.2).

5. Peak performance is preserved: All the benchmarks show that the peak of Ř is pre-

served Řbc.

To better understand the warmup behavior, we also measured the JIT compilation over-

head in isolation, which is shown in Figure 6.2. For Ř this was the total time compiling func-

tions, while for Řbc this was the time spent compiling plus time spent linking and loading

bitcode from the cache. We see that Řbc is consistently better than Ř for all the benchmarks,

with an average improvement of 3.38×. The primary reason for a less reduction in compile

time in flexclust and rmarkdown (discussed in Section 6.2.1) is because of (i) anonymous

R functions cannot be cached unless their enclosing scope is resolved first (this is due to a

limitation of Ř) (ii) new compilation contexts that were not compiled before.

72

Benchmark

JIT Overhead
(ms)

Number of
Compilations OBAP Results

Ř Řbc Ř Řbc
Time

Spent (ms)
Binary

Reduction (%)
Slot

Selection (%)
binarytrees 5462 1880 18 2 250 0 3.1
binarytrees 2 7396 1763 19 0 280 0 3.9
bounce 1936 511 7 0 190 0 0
bounce nonames 1598 367 7 0 180 0 0
convolution slow 1836 596 8 0 200 0 0
fannkuchredux 2116 430 3 0 170 0 0
fastaredux 3155 907 8 0 200 0 0
flexclust 100885 56518 404 175 2080 41.8 0.5
flexclust no s4 34675 14035 116 8 870 36.3 0.7
knucleotide 9076 2750 49 1 400 50.0 0
mandelbrot 1395 259 8 0 180 0 0
mandelbrot ascii 1560 583 5 0 180 0 0
nbody 3982 1764 13 2 260 0 50.0
nbody naive 2 2205 643 6 0 190 0 0
pidigits 60827 21279 102 15 1270 28.6 1.7
regexdna 2495 718 7 0 200 0 0
reversecomplement 1358 453 5 0 170 0 0
rmarkdown 496691 286584 1501 489 3090 48 0.8
spectralnorm 5014 409 7 0 180 0 0
volcano 7786 2232 20 0 270 0 0

Fig. 6.2: Table showing the reduction in compilation and OBAP statistics; JIT overhead is a sum of
compilation time, deserializer load/link time and LLVM bitcode to machine code generation time (in
case of normal Ř the deserializer times are zero).

73

deserializer

baseline

deserializer jitless

interpreter0

100

200

300

2 4 6 8 10

S
ec

s

rmarkdown

Fig. 6.3: Real-world performance

6.2.1 Real-world performance

The previous experiment addressed the performance of benchmark programs, this exper-

iment looks at a real-world application, RMarkdown. We can provide additional data points

for RQ(1, 2, 3).

The repository is built with one run of RMarkdown in serializer mode. This yields 1,384

binaries which are reduced down to 1,091 versions (a 48% reduction, see Figure 6.2).

Figure 6.3 shows the wall-clock time for iterations of RMarkdown under several config-

urations: interpreter (Ř with interpreter only), baseline (Ř with compiler), deserializer (Řbc

with compiler), and deserializer jitless (Řbc jitless).

RMarkdown is an I/O intensive application with little computation in R. The interpreter

is quite fast here. This is a common scenario where the only hope for improvement is to

alleviate the warmup costs that will not be amortized later on. We see the Ř incurs a massive

380 seconds pause and takes eight iterations to reach steady state. Řbc has better warmup

times and reach steady state faster. Řbc in jitless mode is almost matching the interpreter.

74

6.2.2 End-to-end performance

Our previous experiments were best cases scenarios in which the code being run is iden-

tical to the code observed when serializing. This experiment explores the impact on the

performance of version skew. Imagine that we want to test a compiler exhaustively. In the R

ecosystem, one could run the compiler on the extensive test suite that comes with each pack-

age. Unfortunately, this is also a worst-case scenario for a just-in-time compiler. With Ř we

have observed that a single package can take tens of minutes to run through its test suite.

Even worse, each new release of the package requires running everything from scratch.

With Řbc one would like to pay the cost of building a repository once, and then, when

there is a new release of the package, only compile the functions that were changed. This

experiment is set up to evaluate this use case.

We checked out Recommenderlab from its Git repository at six different points over two

years. Thus obtaining different, but related releases. We built the repository over the first

check out, and then used the same repository to test all the releases. We expect that, since

the code bases diverge slowly, the benefits of our approach may decrease. Figure 6.4 shows

the wall-clock time for one run of the test suite (red for Ř and green for Řbc). The results

are encouraging. While Řbc still performs compilation on every run, it reduces the overhead

over Ř by almost a third. Over time, as the code of each release diverges, Řbc spends slightly

more time compiling.

6.2.3 Performance under context explosion

In order to measure the impact of OBAP in cases where the code repository can grow

exponentially, we use a unit test generation tool called genthat [15] which uses various

vignettes and code examples to generate a large variety of tests for a given library. We use

genthat to generate 21475 unit tests for 8 popular R libraries spanning over 900000 lines

of code. Along with this we also include a rmarkdown based program that makes use of

other popular data science libraries. We first run all these tests to obtain our initial code

repository, following which we again run the same tests in a feedback loop to capture even

more contexts. This results in a code repository of 11137 different binaries for a total of

75

0

200

400

600

0 1 2 3 4 5

Version

T
im

e
 (

s
)

Fig. 6.4: Version skew (Ř in red, Řbc with compiler in green)

909 parent functions. We then run our OBAP pass over the obtained code repository, which

reduces the size of the repository by 80% to finally include only 2794 unique functional

binaries in a total time of 61 seconds. We also find that 91% of the binaries were contextually

compiled versions of existing functions in the repository. The number of L2 collisions is

only 2.2% of the total number of binaries processed, meaning that the second-level context

is adequately able to handle a large number of binaries. We perform the following runs of

rmarkdown program (i) deserializer using the repository created from a single serializer run

of the same program (ii) genthat using the repository generated by the genthat unit tests,

(iii) baseline the default Ř implementation; and plot the overall runtime for the same (see

Figure 6.5). As can be seen, the genthat repository consistently outperforms the case where

there was just one feedback run.

In a nutshell, we see that our approach is quite suitable for large programs and efficiently

handles context explosion without losing performance. In Section 6.3, we study this phe-

nomenon further by running serialization runs in a feedback loop, in order to observe how a

steady state in terms of the number of compilations is reached over repeated executions of

the same program.

76

Ti
m

e
(s

ec
)

0

200

400

600

800

Baseline Deserializer Genthat

Fig. 6.5: Speedups when using a large code repository.

6.2.4 Phase change behaviour

Apart from warmup performance, our scheme is potentially beneficial in programs with

phase change behavior. A phase change happens when a program, after continuing to call

a function in a given context for some time, shifts to a new kind of runtime context. In a

traditional JIT compiler such as Ř, phase change triggers a deoptimization event that leads

to recompilation in a more generalized context, one that reflects the union of the new type

feedback with the previous ones. Such recompilations may cause an unexpected slowdown

in the runtime as well as degrade the steady-state performance, due to overgeneralization.

We now discuss how Řbc handles each of these possibilities.

Figure 6.6a compares Řbc and Ř when running three different versions of an R ray

tracer [13]. It shows the speedup that Řbc exhibits over Ř. At iteration 5 we introduce a

phase change. In the simplified and in the type variants, we change the type of the height

map used by the algorithm. In the fun variant we change the interpolation technique. As can

be seen in the first iteration after the phase change, Ř must recompile the new program while

Řbc can get away with loading it from the cache, which is much faster. This can be seen as

an increase in a speedup of Řbc over Ř in the iteration right after a phase change. Afterward,

both versions of the compiler return to a steady state and have the same performance.

To show how Řbc handles overgeneralization during recompilation events, consider the

code snippet in Figure 6.7. We call a function foo, which in turn must look up the defi-

77

s
im

p
lifi

e
d

ty
p

e
fu

n

0 5

0.9

1.0

1.1

1.2
1.3

0.9

1.0

1.1

1.2
1.3

0.9

1.0

1.1

1.2
1.3

iteration

s
p

e
e

d
u

p

(a)
p

h
a

s
e

-c
h

a
n

g
e

0 10 20

1.0

10.0

100.0

1000.0

iteration
s
p

e
e

d
u

p

(b)

Fig. 6.6: (a) Ray-tracings with recompilation-induced phase change at iteration 5. (b) Performance
degradation caused by over generalization after phase change.

1 foo <- function(a,b) {
2 res=0
3 for (i in 1:100000) {
4 res = res
5 + app1(a,1)
6 + app2(1,b) }
7 res
8 }
9 # C1

10 app1 = function(a,b) {
11 bitwShiftL(a,b) }
12 app2 = app1
13 foo(60,2) # 10 times

14 # C2
15 app2 = function(a,b) {
16 a = as.integer(a)
17 bitwShiftL(a,b) }
18 foo(60,2) # 10 times
19 # C3
20 app1 = function(a,b) {
21 a = as.integer(a)
22 bitwShiftR(a+5,b) }
23 app2 = function(a,b) {
24 b = as.integer(b)
25 bitwShiftR(a+6,b) }
26 foo(60,2) # 10 times

Fig. 6.7: Code snippet to demonstrate slowdowns due to overgeneralization of contexts.

78

nitions of app1 and app2 from the environment. During the first 10 invocations of foo,

functions app1 and app2 are bound under context C1, as shown at lines 9-12. In the 11th

iteration we redefine app2, replacing it with a polymorphic version of the same function.

Finally, in the 21st iteration app1 becomes polymorphic as well. In Ř these phase changes

lead to degraded performance, as shown in Figure 6.6b. On the other hand, L2 dispatch

in Řbc is able to contextually separate the different call-site targets and select a more spe-

cialized binary for the new contexts at iterations 12 and 22, subsequently leading to highly

performant runs that are not marred by overgeneralization.

6.3 Iterative Serialization

Notwithstanding the improvements in JIT compilation time shown above, it is possible

that some functions in a program get called in newer contexts in subsequent runs of the

program. In order to demonstrate this aspect, Figure 6.2 (Column 3) shows the number of

compilations under Ř and Řbc for all the programs under consideration. As can be seen,

there are non-zero compilations for a few programs even in Řbc. Our investigation into

the causes of these compilations led to multiple interesting consequences. Firstly, recall

from Section 3.3 that anonymous functions cannot be linked until their enclosing functions

have been compiled, which leads to compilations in the initial runs of a program. More

interestingly, we have designed Řbc in a way that it is possible to create a “serialized-bitcode

repository” iteratively; that is, keep running the serializer in a feedback loop while executing

deserialized bitcodes obtained previously. This allows us to “train” our system in a way

that it keeps learning new compilations, while OBAP keeps reducing redundancies and the

L2 dispatcher ensures picking up the most relevant binaries in the next run. Figure 6.8

shows how the number of new compilations reduces after multiple serializer iterations, for

three RBenchmarking programs from Figure 6.2 that had leftover compilations even in the

deserializer run. The more we train our serializer, the number of new compilations reduces

gradually and finally reaches a near-steady state. Similarly, we can see that the number of

new contexts serialized in each run reduces steadily. We also observed zero compilations and

serializations at steady state for most programs that had non-zero compilations in Figure 6.2.

79

Iteration

0

100

200

300

400

500

1 2 3 4 5

Compilations new contexts

flexclust

Iteration

0

25

50

75

100

125

1 2 3 4 5

Compilations new contexts

flexclust_no_s4

Iteration

0

25

50

75

100

125

1 2 3 4 5

Compilations new contexts

pidigits

Fig. 6.8: Figure showing the emergence of new contexts under iterative feedback.

For the flexclust program, where the number of compilations did not reduce to zero even

after a large number of iterations, we traced down the reasons in the base JIT compiler. Ř is

currently used exclusively for research purposes and, as such, has unresolved corner cases.

Flexclust hit two of those. The first one is that compiled functions expect their arguments

in a fixed order. If the call site ordering does not match its definition, e.g. for named calls,

the caller is responsible for reordering the arguments before the invocation. When the callee

is statically known, the caller’s code includes the instructions to do so. Otherwise, it falls

back to the target’s baseline (interpreter) version and its compilation is skipped, potentially

forever. Now, a callee running a loop in the interpreter can decide to perform on-stack-

replacement and jump out to the newly compiled version (discarded after exiting). This

compilation might also trigger further compilation of new callees (e.g. for inlining). Finally,

if the initial callee is itself invoked within an outer loop, each iteration is bound to execute

its baseline version, triggering the recompilation chain just described. The second issue is

that Ř does not provide good support for the R S4 object system and will sometimes fail

to compile functions that perform S4 dispatch, even to a baseline version. Because of that,

its inner functions get instantiated and compiled on every invocation and the system never

stabilizes. This problem resonates with the limitation for serializing anonymous functions

described above.

We expect that the end goal of having zero compilations for all programs would also

allow us to further improve the Ř compiler itself. Thus, we have found that the approach

proposed in this thesis, apart from its intended goals of obtaining performant reusable R

80

1.0

10.0

100.0

1000.0

4 8 12
Iteration

T
im

e
(m

s)

binarytrees

1.0

10.0

100.0

1000.0

4 8 12
Iteration

T
im

e
(m

s)

binarytrees_2

1.0

10.0

100.0

1000.0

10000.0

4 8 12
Iteration

T
im

e
(m

s)

flexclust

1.0

10.0

100.0

1000.0

10000.0

4 8 12
Iteration

T
im

e
(m

s)

flexclust_no_s4

1.0

10.0

100.0

1000.0

4 8 12
Iteration

T
im

e
(m

s)

knucleotide

1.0

10.0

100.0

1000.0

4 8 12
Iteration

T
im

e
(m

s)

nbody

1.0

10.0

100.0

1000.0

10000.0

4 8 12
Iteration

T
im

e
(m

s)

pidigits

1.0

10.0

100.0

1000.0

10000.0

4 8 12
Iteration

T
im

e
(m

s)

volcano

Fig. 6.9: Relative performance of the last-seen strategy (blue line) vis-à-vis Řbc (red line).

binaries with minimal JIT cost, also helps us discover interesting corner cases and debug the

same in a dynamic JIT compiler.

Overall, based on the observations in the last three sections, we see that our proposed

scheme leads to significant improvements in the time spent in JIT compilation (including a

reduction in warmups as well as phase-change times) while preserving (and in some cases,

improving) the performance of the underlying programs. In the next section, we elabo-

rate on the impact of the various components of our approach, viz. the two-level dispatch

mechanism as well as the OBAP pass.

6.4 Impact of OBAP and Two-Level Dispatch

In order to target fast compilation, typical JIT compilers maintain only one binary per

compiled function [16, 17]. Ř, on the other hand, maintains multiple binaries each with dif-

ferent assumptions about arguments at call-sites. Going one step further, in this thesis we

have proposed an approach that tries to use the learnings from different runs of a program

in optimizing the same for later runs; we accomplish this using a first-of-its-kind two-level

dispatch based on both call-site assumptions (first-level context) and recorded runtime feed-

81

back (second-level context). In order to address the potential overheads of such a scheme,

our OBAP pass reduces code bloat and determines a greedily optimal number of slots that

need to be compared in the second-level dispatch. In this section, we show that this OBAP

supported two-level dispatch mechanism is capable of as well as necessary for preserving

performance and minimizing recompilations.

The last three columns in Figure 6.2 show the characteristics of our OBAP pass. We see

that for the larger benchmark programs (those that incur a significant amount of JIT com-

pilation, such as flexclust, pidigits, and rmarkdown), the OBAP pass is able to identify and

eliminate functionally redundant binaries. Similarly, the slot selection algorithm is success-

ful in identifying a very small number of slots that are representative of the second-level

context. For programs with less or negligible reduction (such as bounce and fastaredux), we

found that there was limited scope due to a very small number of compilations and there

were no redundant binaries or slots in the first place. We also observe that the time taken to

perform OBAP is in the order of a few hundred milliseconds, which, considering its offline

nature, is very reasonable. In a nutshell, we note that our OBAP phase is quite effective in

supporting a two-level dispatch scheme for preserving JIT benefits in large programs. We

next evaluate what would happen if instead of OBAP and two-level dispatch, we were to use

a naive serialization strategy that only dispatches based on the first-level context.

In case we were to dispatch based on only the first-level context, we need to identify a

representative binary for each context. This is an interesting problem: If we were conser-

vative and picked a very generic binary, it might get dispatched in most contexts but end

up losing performance. Whereas if we were ambitious and chose to pick a very specialized

binary, we might achieve good performance in compatible contexts but introduce a large

number of compilations in others. We tried to experiment with this fact by choosing the last

seen second-level binary for a given first-level context (that is, effectively disabling L2), as

in a single run of the serializer, this binary would have been obtained with the most amount

of feedback for a given first-level context. Figure 6.9 shows the per iteration performance

of this last-seen approach, relative to Řbc, for the programs for which Řbc reduces binaries

or slots as seen in Figure 6.2. Notably, though selecting a good single binary gives steady-

state performance similar to Řbc in many cases (due to high specialization), it fails to suit

82

N
um

be
r o

f c
om

pi
la

tio
ns

1

5

10

50

100

bin
ary

tre
es

bin
ary

tre
es

_2

fle
xc

lus
t

fle
xc

lus
t_n

o_
s4

kn
uc

leo
tid

e
nb

od
y

pid
igi

ts

vo
lca

no

baseline last-seen deserializer

Fig. 6.10: Number of compilations when using only last-seen strategy.

all kinds of contexts and leads to recompilation spikes as visible for pidigits, where the run-

time context changes constantly. In order to further validate our hypothesis, we counted the

number of compilations under this approach vis-à-vis Řbc for the programs of interest; see

Figure 6.10. It is clear that the alternative approach leads to a large number of compilations

for the programs in which it performs worse (e.g. pidigits). Combining this observation with

the fact that a two-level dispatch helps avoid the bad effects of overgeneralization (as seen in

Section 6.2), we conclude that L2 dispatch as performed by Řbc is an apt way of replicating

the performance of a traditional JIT system while scaling it to different runtime contexts.

6.5 Discussion

The techniques discussed in this thesis are designed to address a scenario where the

repository can be built from various users of R, running different systems and hardware,

with the aim of collecting as much contextual compilation data as possible. Our approach

assumes that a function has a finite number of ways it is actually used, and over time, we can

gather all these cases in our repository. In this section, we further explore the applicability

83

of our techniques in different scenarios, along with their respective pros and cons.

Performance improvements when using precompiled binaries over IR? Our current im-

plementation utilizes platform-independent LLVM bitcodes to ensure they can be collected

from different users running different hardware, yet remain available for future use. How-

ever, if we target a specific platform, we can easily compile these bitcodes offline into object

files using the LLVM llc static compiler. During this compilation process, all the references

are replaced with loads from the global object table and the function relocation table. The en-

tire deserializer process can then remain intact, accepting these object files as they are. Our

experiments have shown that using object files instead of bitcodes results in a warmup im-

provement of 9× (over 3.38× when using bitcodes). The ability to compile bitcodes offline

can be viewed as a simple user choice that can further enhance the overall user experience.

What happens when some contexts are missing? Due to the non-deterministic nature of

Ř, it is not always possible to eliminate all compilations using our techniques. This limi-

tation arises from both the inherent constraints of Ř itself and our specific implementation.

However, as demonstrated in our end-to-end performance evaluation (refer to Section 6.2.2),

even in scenarios where not all contexts are available, a significant portion of the repository

still gets utilized whenever possible. In cases where some contexts are missing, the JIT

compiler simply recompiles the corresponding functions. However, if the JIT is disabled,

we might experience a performance degradation in terms of peak performance when certain

contexts are absent.

6.6 Summary

This chapter presents an evaluation of our three-stage process on standard benchmarks

and real-world programs. We begin by describing our methodology and experimental setup.

Then, we compare our system’s performance against the existing Ř implementation in terms

of compilation times and peak performance behaviors. To demonstrate the performance

improvement of our approach, we showcase representative benchmarks selected from the

RBenchmarking suite. Our findings reveal that warmup times are significantly reduced,

while peak performance is maintained. We achieve an improvement of 3.38× in compilation

84

times, and we also identify interesting behaviors such as avoidance of late-stage compila-

tions due to the binary already existing in the deserializer stage. Overall, our approach saves

significant time in the warmup phase and provides an all-around speedup.

Next, we evaluate our approach when running a real-world program, end-to-end perfor-

mance when code changes over time and during context explosion. We see that our approach

is able to handle large real-world programs and provide improvements as seen previously.

The end-to-end performance results show that large parts of the repository can be reused

even when the code base is changing over time. In measure performance of OBAP under

context explosion we use genthat to generate unit tests for popular R libraries. The OBAP

phase efficiently manages the large repository, and our results show an improvement in per-

iteration times for the Rmarkdown program.

We also investigate the phase change behavior for two programs: (i) a known ray-tracing

implementation and (ii) a synthetic program where multiple phase changes are induced. Our

system is easily able to handle these cases.

To understand the workings of serialization and deserialization together, we perform

iteration serialization where we update the repository after a program’s run. In all of these

runs, both the serializer and deserializer are on. This helped us discover existing bugs in

the compiler, and we found that for most programs, the number of new contexts under this

scheme steadily reduces.

Finally, we compare our strategy to the naive last-seen strategy. We find that the L2 dis-

patch performs much better in programs that are highly dynamic and create a large number

of contexts at runtime.

85

86

Chapter 7

Related Work

Caching compilation artifacts or profile information to speed up JIT warmup is not a

new idea and there is a large number of publications in this space. In this section, we discuss

some of this previous work and compare it to our contextual dispatching technique.

One of the first JIT compilers to cache its compilation results was the Quicksilver com-

piler [18, 19]. They developed ways to patch the cached binaries, in order to update the

external references within. They also described how to invalidate the cache if the method

in question has been redefined, or if any of the methods it inlines were redefined. These

patching and cache-invalidation concerns are unavoidable and must be answered by any

JIT compiler that wants to do this sort of caching. One of the main differences between

Quicksilver and our work is that we compile multiple contextual versions of each method.

ShareJIT [20] is a mechanism in the Android Runtime, which caches JIT-produced ex-

ecutables. They faced the problem of choosing between compiling multiple specialized

versions for each method or a general one-size-fits-all version. While in our work we have

focused on keeping as many versions around as possible, ShareJIT often chose in the op-

posite direction. Mobile devices have limited storage capacity and reducing the size of the

code cache was paramount. They even chose to disable some compiler optimizations, such

as method inlining, because it worked against the sharing of compilation artifacts.

Some publications have focused on caching profile data instead of compilation artifacts.

Although this does not save compilation time, it is simpler and requires less disk space. It

also sidesteps questions such as how to deal with variations in the operating system environ-

87

ment, or security concerns if the cache is shared among multiple users. One of the earliest

works to cache profile data was that of Arnold, Welc, and Raja for the J9 Java VM [21].

They used the profile data to allow the JIT to immediately compile methods it expects will

be hot, without having to wait to collect the profile data again. Similar to our work, they also

had to decide what to do when different runs produced different profile data. Their answer

was to combine the profile data into a single profile for each program. However, that re-

sulted in suboptimal peak performance when programs were trained on bimodal inputs. Our

approach does not suffer in terms of peak performance like this, because we do not merge

the profile data collected across runs.

Another work that cached profile data was Ottoni and Liu’s Jump Start system for

HHVM [22]. Their target language was Hack, a dialect of PHP, which like R is a highly

dynamic language. Therefore, similarly to us, they had to record a good deal of run-time-

type feedback, something that the Java VMs do not have to do as much. However, unlike

us, they only store a single profile for each function. Their use case assumes that the VM

powers a fleet of web servers that are all running the exact same workload.

Finally, we note two papers that discuss caching IR versus caching executables. In their

first attempt at a code-caching JIT for Javascript, Zhuykov et al. serialized the executa-

bles [23]. They were disappointed to not see any speedups from the caching output of the

baseline level of the JIT. They found that patching the code from the cache took just as

long as compiling it from scratch because the baseline JIT has fewer optimizations and runs

quite fast already. For their second attempt, they switched gears and decided to serialize the

compiler IR instead of the final binary [24]. This choice was largely because patching IR is

easier than patching native binaries. In our work, we also cache the IR, although our moti-

vation stems from unlocking the analysis to identify redundant binaries. There are situations

where we are able to identify two equivalent programs by looking at the IR, which would be

harder to do by looking only at the final executable. Another difference between Zhuikov’s

work and ours is, again, that we record multiple versions for each function and pick the best

one at run-time; they only remember the last version encountered.

88

89

Chapter 8

Conclusion and Future Work

Just-in-time (JIT) compilers optimize programs by learning from their live history during

execution. They can observe the arguments at call sites, gather information about the types

flowing into various expressions, remember call targets, and specialize a function based on

speculations made with the feedback collected thus far. These compilers are capable of

recovering from wrong assumptions, by deoptimizing and recompiling to accord a more

generic behaviour. All this makes a JIT-compiled program performant, but at the cost of

significant time spent in making these decisions and recompiling functions to suit the current

context; which is decided by call-site assumptions and feedback information. This cost is

often witnessed in the form of high warmups that degrade user experience, and sudden

slowdowns during deoptimization and recompilation.

There have been attempts to reduce the cost brought in by JIT compilation by performing

ahead-of-time compilation. However, it rarely helps for dynamic and lazy languages where

the amount of information known statically is incapable of allowing meaningful optimiza-

tions. In this thesis, we offer a novel view of JIT optimizations as ones that can be derived

based on the insights gained not only during the current run but from a series of runs, and not

only for one program but also from uses of shared libraries in different programs. We thus

propose a scheme that records information about various JIT-compiled functions across dif-

ferent call-site and feedback contexts, and efficiently reuses these contextually specialized

JIT binaries in future executions.

An important challenge with a scheme that generates a plethora of contextual binaries

90

for various functions is to restrict code explosion by identifying binaries that perform similar

amount of computation, as well as parts of the contexts across these binaries that express

redundant specialization. We do all this before allowing our binaries to be reused – offline

– and provide a novel two-level dispatch mechanism that selects the most relevant binary

based on the runtime context during execution.

In the offline analysis, we also identify a small set of relevant feedback slots for in-

dexing the leftover binaries, which our dispatcher later makes use of for a fast contextual

lookup. Our evaluation over an optimizing R compiler shows that we reduce warmup times

significantly, handle phase changes during deoptimization efficiently, and overall enable a

performance similar to a fully blown JIT system at a much smaller associated cost.

While the prototype implementation explored here is for the R language, our approach

may extend to other dynamic languages. The main issue that should be investigated is

whether the cost of speculative contextual dispatch is acceptable in language with lighter-

weight functions. In R, function calls are extremely expensive, and each function tends to do

a lot of work. So the dispatching overhead can be amortized easily. It would be interesting

to reproduce our experiments in the context of a language such as JavaScript or Python.

In future, it remains to be seen how our approach integrates with a tiered VM architecture

comprising both an interpreter and a compiler. In particular, we would like to develop a

tiered strategy that uses an interpreter for fast execution of the cold regions of a program,

and switches to a historically learnt efficient binary for the portions deemed suitable to be

tweaked for performance. We also look forward to the community extending and applying

our proposed techniques to develop JIT strategies for even more runtimes, and for even more

exciting programming languages.

91

92

References

[1] G. Krylov, G. W. Dueck, K. B. Kent, D. Maier, and I. D’Souza, “Ahead-of-Time Com-

pilation in OMR: Overview and First Steps,” in Proceedings of the 29th Annual Inter-

national Conference on Computer Science and Software Engineering, ser. CASCON

’19. USA: IBM Corp., 2019, p. 299–304.

[2] M. Thom, G. W. Dueck, K. Kent, and D. Maier, “A Survey of Ahead-of-Time Tech-

nologies in Dynamic Language Environments,” in Proceedings of the 28th Annual

International Conference on Computer Science and Software Engineering, ser. CAS-

CON ’18. USA: IBM Corp., 2018, p. 275–281.

[3] O. Flückiger, G. Chari, J. Ječmen, M.-H. Yee, J. Hain, and J. Vitek, “R Melts Brains:

An IR for First-Class Environments and Lazy Effectful Arguments,” in Proceedings of

the 15th ACM SIGPLAN International Symposium on Dynamic Languages, ser. DLS

2019. New York, NY, USA: Association for Computing Machinery, 2019, p. 55–66.

[Online]. Available: https://doi.org/10.1145/3359619.3359744

[4] O. Flückiger, G. Chari, M.-H. Yee, J. Ječmen, J. Hain, and J. Vitek, “Contextual

Dispatch for Function Specialization,” Proc. ACM Program. Lang., vol. 4, no.

OOPSLA, nov 2020. [Online]. Available: https://doi.org/10.1145/3428288

[5] RBenchmarking, “RBenchmarking,” https://github.com/reactorlabs/RBenchmarking,

2018, [Online; accessed 6-September-2023].

[6] L. Tierney, “A Byte Code Compiler for R,” http://www.stat.uiowa.edu/ luke/R/compil-

er/compiler.pdf, 2019.

[7] L. Stadler, A. Welc, C. Humer, and M. Jordan, “Optimizing R Language Execution

via Aggressive Speculation,” SIGPLAN Not., vol. 52, no. 2, p. 84–95, nov 2016.

[Online]. Available: https://doi.org/10.1145/3093334.2989236

93

https://doi.org/10.1145/3359619.3359744
https://doi.org/10.1145/3428288
https://github.com/reactorlabs/RBenchmarking
https://doi.org/10.1145/3093334.2989236

[8] T. Kalibera, P. Maj, F. Morandat, and J. Vitek, “A Fast Abstract Syntax Tree

Interpreter for R,” SIGPLAN Not., vol. 49, no. 7, p. 89–102, mar 2014. [Online].

Available: https://doi.org/10.1145/2674025.2576205

[9] Microsoft and R. C. Team, Microsoft R Open, Microsoft, Redmond, Washington,

2017. [Online]. Available: https://mran.microsoft.com/

[10] M. K. Mehta, “RSH WIZ. (2021),” https://github.com/CompL-Research/rsh-wiz.git,

2021, [Online; accessed 19-February-2023].

[11] D. J. Bernstein, “djb2 hash function,” http://www.cse.yorku.ca/∼oz/hash.html, 1991,

[Online; accessed 6-September-2022].

[12] M. Love, R. Irizarry, V. Carey et al., “Genomicsclass/labs: RMD source files for the

Harvardx series ph525x. (2013),” https://github.com/genomicsclass/labs, 2013, [On-

line; accessed 6-September-2023].

[13] T. Morgan, “Throwing Shade Ray Tracer,” https://www.tylermw.com/throwing-shade/,

2008, [Archived at https://web.archive.org/web/20210514032050/https:

//www.tylermw.com/throwing-shade.

[14] M. Hahsler, “Recommenderlab: An R framework for developing and testing recom-

mendation algorithms,” May 2022.

[15] F. Křikava and J. Vitek, “Tests from traces: automated unit test extraction for R,”

in 27th ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA 2018), ser. Proceedings of the 27th ACM SIGSOFT International Symposium

on Software Testing and Analysis. Amsterdam, Netherlands: ACM Press, Jul. 2018,

pp. 232–241. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02131523

[16] M. Paleczny, C. Vick, and C. Click, “The Java Hotspot Server Compiler,” in Proceed-

ings of the 2001 Symposium on JavaTM Virtual Machine Research and Technology

Symposium - Volume 1, ser. JVM’01. USA: USENIX Association, 2001, p. 1.

[17] E. OpenJ9, “The Eclipse OpenJ9 Virtual Machine,” https://www.eclipse.org/openj9/,

2020.

[18] M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta, “Quicksilver: A Quasi-Static

Compiler for Java,” in Proceedings of the 15th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, ser. OOPSLA

94

https://doi.org/10.1145/2674025.2576205
https://mran.microsoft.com/
https://github.com/CompL-Research/rsh-wiz.git
http://www.cse.yorku.ca/~oz/hash.html
https://github.com/genomicsclass/labs
https://www.tylermw.com/throwing-shade/
https://web.archive.org/web/20210514032050/https://www.tylermw.com/throwing-shade
https://web.archive.org/web/20210514032050/https://www.tylermw.com/throwing-shade
https://hal.archives-ouvertes.fr/hal-02131523

’00. New York, NY, USA: Association for Computing Machinery, 2000, p. 66–82.

[Online]. Available: https://doi.org/10.1145/353171.353176

[19] P. G. Joisha, S. P. Midkiff, M. J. Serrano, and M. Gupta, “A Framework

for Efficient Reuse of Binary Code in Java,” in Proceedings of the 15th

International Conference on Supercomputing, ser. ICS ’01. New York, NY, USA:

Association for Computing Machinery, 2001, p. 440–453. [Online]. Available:

https://doi.org/10.1145/377792.377902

[20] X. Xu, K. Cooper, J. Brock, Y. Zhang, and H. Ye, “ShareJIT: JIT Code Cache Sharing

across Processes and Its Practical Implementation,” Proc. ACM Program. Lang.,

vol. 2, no. OOPSLA, oct 2018. [Online]. Available: https://doi.org/10.1145/3276494

[21] M. Arnold, A. Welc, and V. T. Rajan, “Improving Virtual Machine Performance Using

a Cross-Run Profile Repository,” in Proceedings of the 20th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications,

ser. OOPSLA ’05. New York, NY, USA: Association for Computing Machinery,

2005, p. 297–311. [Online]. Available: https://doi.org/10.1145/1094811.1094835

[22] G. Ottoni and B. Liu, “HHVM Jump-Start: Boosting Both Warmup and Steady-State

Performance at Scale,” in 2021 IEEE/ACM International Symposium on Code Gener-

ation and Optimization (CGO), 2021, pp. 340–350.

[23] R. Zhuykov, V. Vardanyan, D. Melnik, R. Buchatskiy, and E. Sharygin, “Augment-

ing JavaScript JIT with ahead-of-time compilation,” in 2015 Computer Science and

Information Technologies (CSIT), 2015, pp. 116–120.

[24] R. Zhuykov and E. Sharygin, “Ahead-of-time compilation of JavaScript programs,”

Programming and Computer Software, vol. 43, no. 1, pp. 51–59, jan 2017.

95

https://doi.org/10.1145/353171.353176
https://doi.org/10.1145/377792.377902
https://doi.org/10.1145/3276494
https://doi.org/10.1145/1094811.1094835

96

Publication Based on this Thesis

Refereed Publications:

1. M. K. Mehta, S. Krynski, H. Gualandi, M. Thakur, J. Vitek. 2023. “Reusing Just-

in-Time Compiled Code”. Conditionally accepted in Proc. ACM Program. Lang.,

OOPSLA 2023, Cascais, Portugal, Oct 22-27, 2023.

97

	Acknowledgments
	Abstract
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Objectives
	Thesis Organization
	Contributions

	Background
	Just-In-Time Compilation
	The Ř JIT Compiler
	Profiling in Ř
	Type feedback
	Test feedback
	Callee feedback

	Contextual Dispatch
	Runtime Behaviour of Contextual Dispatch
	Redundancy in Compilation Contexts
	LLVM Bitcode
	Summary

	Serializing JIT Binaries
	Overview
	The Code Repository
	AST Hashing
	Bitcode Patching
	Pointers to global variables
	Pointers to closure objects
	Indirect references to objects stored in the constant pool
	Patching deoptimization reason
	Patching deoptimization metadata
	Patching references to the source pool

	Pool Patching
	Summary

	Offline Bitcode Analysis and Processing
	Running Example
	Binary Reduction
	Feedback Versioning
	Level-2 Collisions
	Summary

	Deserializer and L2 Dispatcher
	Deserializer
	Patching
	L2 Dispatcher
	Summary

	Evaluation
	Experimental Setup
	Compilation Time and Peak Performance
	Real-world performance
	End-to-end performance
	Performance under context explosion
	Phase change behaviour

	Iterative Serialization
	Impact of OBAP and Two-Level Dispatch
	Discussion
	Summary

	Related Work
	Conclusion and Future Work
	References
	Publications based on this Thesis

