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Type rules can help prevent invalid 
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What are Types?

Not all rules can be verified 
during static analysis. 



What are Types?

In languages like C/C++, types act as annotations that 
allow the compiler to identify invalid code using type rules.
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What are Types?

In Java, these 
assignments are 
always correct.
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obj4 -> {Object, A}



What are Types?

obj4 -> {Object, A}

50% of time this code 
is correct, other 
times JVM prevents 
execution of this code.



What are Types?

In languages like 
Java, types are 
values at runtime. 
This allows the 
type system to 
provide 
guarantees about 
the system.



What are Types?

[Specifying Systems: The TLA+ 
Language and Tools for Hardware 
and Software Engineers - ‘02]



What are Types?

Variable declaration 
and initialization.



What are Types?

Valid steps that can be 
taken at each point.



What are Types?

Type invariant



What are Types?
In languages like TLA+, types 
are invariants on variables.

When implementing a 
specification, the type 
invariants may be asserted 
statically or dynamically.
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a = (a, b) => a < b;
a = [1,3,2].sort(a);
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let a = (a, b) => a < b;
let b = (a, b) => a < b;
let c = a + b; // What does it even mean to add two functions ?
console.log(c);
let d = c(1,2);

What are Types?



let a = (a, b) => a < b;
let b = (a, b) => a < b;
let c = a + b; // What does it even mean to add two functions ?
console.log(c);
let d = c(1,2);

What are Types?

c is a string!



let a = (a, b) => a < b;
let b = (a, b) => a < b;
let c = a + b; // What does it even mean to add two functions ?
console.log(c);
let d = c(1,2);

What are Types?

Runtime assertion fails! 



let a = (a, b) => a < b;
let b = (a, b) => a < b;
let c = a + b; // What does it even mean to add two functions ?
console.log(c);
let d = c(1,2);

What are Types?

In languages like JavaScript, types are runtime values, 
checked at runtime.
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Tag-free variables ==> improved performance & complex GC/runtime

Tagged variable ==> slower performance & robust GC/runtime
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How are types created?

From existing types – Using language primitives, other declared types.

Completely new types – Behave like new primitives.



How are types created? Types from existing types

// Type String in Haskell
type String = [Char]

// One might view it as a typedef in C
typedef char* string;



How are types created? Types from existing types

// Type Distance described in terms of Type Point in Haskell
type Point = ( Int , Int )
type Distance = Point -> Point -> Int

// One might view it as the following in C ++.
typedef struct Point {

int a,b;
}
typedef int (* Distance ) (Point,Point);



How are types created? Types from existing types

// Type Distance described in terms of Type Point in Haskell
type Point = ( Int , Int )
type Distance = Point -> Point -> Int

// One might view it as the following in C ++, but not really.
typedef struct Point {

int a,b;
}
typedef int (* Distance ) (Point,Point);



How are types created? Types from existing types

// Type A and Type B in Haskell are synonyms
type A = (Int,Int)
type B = (Int,Int)

f :: A -> B
f (a,b) = (b,a)

g :: A -> Int
g (a,b) = a + b

// Executing function f and g
g ( f (1 ,2) )



How are types created? Types from existing types

// Type A and Type B in Haskell are synonyms
type Point1 = (Int,Int)
type Point2 = (Int,Int)

// In C they are not
typedef struct Point1 {

int a,b;
}

typedef struct Point2 {
int a,b;

}



How are types created? Types from existing types

Equality in Haskell for types declared using ‘type’ is structural.

Recursion is now allowed for such types.

// Invalid in Haskell
type Tree=(Int,[Tree])

// Haskell compiler does not infer recursion in types, instead the 
programmer is responsible for explicitly marking it.



How are types created? Completely new types

// Type A and Type B in Haskell are synonyms
data Point1 = C1 Int Int 
data Point2 = C2 Int Int



How are types created? Completely new types

// Type A and Type B in Haskell are synonyms
data Point1 = C1 Int Int 
data Point2 = C2 Int Int

Constructor

Keyword



How are types created? Completely new types

// Type A and Type B in Haskell are synonyms
data Point1 = C1 Int Int 
data Point2 = C2 Int Int

// Equivalent C code
typedef struct Point1 {

int a,b;
}

typedef struct Point2 {
int a,b;

}
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Inference of types

letrec map f m = if (null m) then nil
                 else cons (f (car m)) (map f (cdr m))

A Theory of Type Polymorphism in Programming [JCSS-1978]



Inference of types

letrec map f m = if (null m) then nil
                 else cons (f (car m)) (map f (cdr m))

typeof (map) = (α → β) → α list → β list



Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
                 else cons (f (car m)) (map f (cdr m))

Free identifiers ⇒ Not defined as an argument of current/parent lambdas.



Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
                 else cons (f (car m)) (map f (cdr m))

Generic types of free identifiers



Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
                 else cons (f (car m)) (map f (cdr m))

Substituting Type Variables
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letrec map f m = if (null m) then nil
                 else cons (f (car m)) (map f (cdr m))



Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
                 else cons (f (car m)) (map f (cdr m))



Modeling Types as a System of Linear Equations

If Robinson’s unification algorithm succeeds, typechecking OK, 
otherwise fail. 



// Example1: auto keyword in C++

std::vector <int> foo (int a) {
auto vec;
return vec;

}
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// Example1: auto keyword in C++

std::vector <int> foo (int a) {
auto vec;
return vec;

}

TYPECHECK FAIL

‘auto’ specifies that the type of the variable that is being declared will be 
automatically deduced from its initializer.

Some languages impose restrictions on their type inference systems.



// Example2: inference in TypeScript

function foo ( a : number ) : number [] {
let vec;

return vec;
}

Same example works fine in case of TypeScript!



// Example2: inference in TypeScript

function foo ( a : number ) : number [] {
let vec;
// Successful unification
return vec;

}

Same example works fine in case of TypeScript!

TYPECHECK OK



Limitations of this system

Tuple of size two as input argument

Return a tuple with reversed tuple 
values.
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Limitations of this system



Limitations of this system



Limitations of this system: Possible Solution

We could instantiate type variables. 

Types that do not appear as part of any enclosing formal parameters are 
allowed to be instantiated.



Limitations of this system: Possible Solution

Types that do not appear as part of any enclosing formal parameters are 
allowed to be instantiated.

When f is an argument, even this fails.
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Strength of Type Systems

Ideally we would want to allow as much program behaviour as 
possible and still be able to typecheck the program.

A very restrictive type system makes it difficult to describe certain 
kinds of programs.

A limited type system may also make performing type preserving 
optimizations difficult.



Strength of Type Systems
let l = [1,“Hello”,3.14] as const

let m = reverse(...l)

let n : inference = m.first()

console.log(n + 33.3) 



Strength of Type Systems
let l = [1,“Hello”,3.14] as const

let m = reverse(...l)

let n : inference = m.first()

console.log(n + 33.3) 

[Int | String | Float]

[Float | String | Int]

[Float | String | Int]

floatAdd | StringAdd | IntAdd 



Strength of Type Systems
let l = [1,“Hello”,3.14] as const

let m = reverse(...l)

let n : inference = m.first()

console.log(n + 33.3) 

[Int, String, Float]

[Float, String, Int]

[Float]

Call floatAdd



Strength of Type Systems: Pattern Matching
type Reverse <T extends any []> = 
      T extends [infer T1 , ...infer Ts]
      ? [ ... Reverse < Ts > , T1 ]
      : T;

declare function reverse<T extends any []>(... ts : T) : Reverse<T>;



Strength of Type Systems: Pattern Matching
type Reverse <T extends any []> = 
      T extends [infer T1 , ...infer Ts]
      ? [ ... Reverse < Ts > , T1 ]
      : T;

declare function reverse<T extends any []>(... ts : T) : Reverse<T>;

A Type Variable T can be a any list.
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type Reverse <T extends any []> = 
      T extends [infer T1 , ...infer Ts]
      ? [ ... Reverse < Ts > , T1 ]
      : T;

declare function reverse<T extends any []>(...ts : T) : Reverse<T>;

Return type of reverse if Reverse<T>



Strength of Type Systems: Pattern Matching
type Reverse <T extends any []> = 
      T extends [infer T1 , ...infer Ts]
      ? [ ... Reverse < Ts > , T1 ]
      : T;

declare function reverse<T extends any []>(...ts : T) : Reverse<T>;

Pattern matching



Strength of Type Systems: Pattern Matching
type Reverse <T extends any []> = 
      T extends [infer T1 , ...infer Ts]
      ? [ ... Reverse < Ts > , T1 ]
      : T;

declare function reverse<T extends any []>(...ts : T) : Reverse<T>;

Pattern matching, with inferred type variables T1 and Ts

Even recursion is supported!!



Strength of Type Systems: Conditional Typing

type APIResult<T extends boolean> = T extends true ?
                                 ExtraInformation : BasicInformation;

function apiCall(extra: boolean) : ApiResult<typeof extra> {
  if (extra) { return new ExtraInformation(); }
  else { return new BasicInformation(); }
}

const extraInformation = apiCall(true); // ExtraInformation
const basicInformation = apiCall(false); // BasicInformation



Strength of Type Systems: Conditional Typing

type APIResult<T extends boolean> = T extends true ?
                                 ExtraInformation : BasicInformation;

function apiCall(extra: boolean) : ApiResult<typeof extra> {
  if (extra) { return new ExtraInformation(); }
  else { return new BasicInformation(); }
}

const extraInformation = apiCall(true); // ExtraInformation
const basicInformation = apiCall(false); // BasicInformation

Narrowing



Strength of Type Systems: Defunctionalization

Typed Closure Conversion [POPL ‘96]
Defunctionalization with Dependent Types [PLDI ‘24]

Defunctionalization is an important optimization, it helps separate a 
functions body and data.



let val x = 1 
    val y = 2 
    val z = 3 
    val f = λw. x + y + w 
in 
    f 100 
end

Strength of Type Systems: Defunctionalization



Strength of Type Systems: Defunctionalization
let val x = 1 
    val y = 2 
    val z = 3 
    val f = (λenv. λw. (#x env) + (#y env) + w) { x=x, y=y }
in 
    f 100 
end



Strength of Type Systems: Defunctionalization
let val x = 1 
    val y = 2 
    val z = 3
    val code = λenv. λw. (#x env) + (#y env) + w
    val env = { x=x, y=y }
    val f = (code, env)
in 
    (#1 f) (#2 f) 100 
end



Strength of Type Systems: Defunctionalization
let val x = 1 
    val y = 2 
    val z = 3
    val code = λenv. λw. (#x env) + (#y env) + w
    val env = { x=x, y=y }
    val f = (code, env)
in 
    (#1 f) (#2 f) 100 
end

τcode= τenv→τ1→τ2 τf= (τenv→τ1→τ2) X τenv



Strength of Type Systems: Existential Types
let val y = 1 
in 
    if true then 
        λx. x + y
    else 
        λz. z
end



Strength of Type Systems: Existential Types
let val y = 1 
in 
    if true then 
        (λenv. λx. x + #y(e), {y=y})
    else 
        (λenv. λz. z, {})
end

( {y: int}→int→int) X {y:int} ) ( {}→int→int) X {} )



Strength of Type Systems: Existential Types
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Uses of Type Systems: Optimization [TIL- PLDI ‘96]
fun sub [α] ( x :α array , i : int ) = 
   typecase α of
     int => intsub (x , i )
   | float => floatsub (x , i )
   | ptr (τ) => ptrsub (x , i )

fun sub [ float ] (x , 10)

floatsub (x , 10)

Intensional polymorphism, static analysis of types



Uses of Type Systems: GC [TIL- PLDI ‘96]

Locations of pointers and their liveness information can be encoded in the stack 
frame directly.

So no tag’s need to be maintained for stack variables and registers.

Only tags for heap-allocated objects are required.

A LOT OF MODERN LANGUAGES LIKE JAVA USE THESE PRINCIPLES.



Uses of Type Systems: Safety 
package p ;
public class Table {
    private Bucket [] buckets;
    public Object[] get ( Object key ) { return buckets; }
}

class Bucket {
    Bucket next ;
    Object key , val ;
}

Type-based Confinement [JFP - ‘06]



Uses of Type Systems: Safety 

C1: Must not appear in the type of a public/prot field or the return type of a public/prot method.

C2 : A confined type must not be public.

C3 : Method invoked on an expression of confined type must either be defined in a
confined class or be anonymous.

C4 : Subtypes of a confined type must be confined.

C5 : Confined types can be widened only to other confined types.

C6 : Overriding must preserve anonymity of the methods.

A1: “this” is used only to select fields and be a receiver of other anonymous methods.



Uses of Type Systems: Safety 
package p ;
public class Table {
    private Bucket [] buckets ;
    public Object[] get ( Object key ) { return buckets; }
}

conf class Bucket {
    Bucket next ;
    Object key , val ;
}



Uses of Type Systems: Safety 
package p ;
public class Table {
    private Bucket [] buckets ;
    public Object[] get ( Object key ) { return buckets; }
}

conf class Bucket {
    Bucket next ;
    Object key , val ;
}

TYPECHECK FAIL
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Types for dynamic languages: A case for R 

Designing Types for R, Empirically [OOPSLA - ‘20]

● Implemented a tool called TypeTracer, that traces types for methods at 
runtime.

● ContractR decorates function bodies with type assertions.



Types for dynamic languages: A case for R 

● Even though types as data frames and complex classes are used regularly, 
they found that the most popular types at runtime are vectors and matrices, etc.

● They found that 80% of functions are monomorphic or have only one 
polymorphic argument.



Approximate missing things using 
a missing field.

Types for dynamic languages: A case for Python 

CLASS BASED TYPES OBJECT BASED TYPES

Every object evolution is a new 
type.

What Types Are Needed for Typing Dynamic Objects? A Python-Based Empirical Study [APLAS - ‘23]



Types for dynamic languages: A case for Python 
Constructor Polymorphism

typeof (panel1) = 
  { title: Text, 
    width: int, 
    height: int }

typeof (panel2) = 
  { title: Str, 
    width: NoneType }



Types for dynamic languages: A case for Python 
Class Based Types

Panel@C1: {
    title : Text,
    width : Int
}

Panel@C2: {
    title : Str,
    width : None or
            Int
    height: None or 
            Int
}



Types for dynamic languages: A case for Python 
Object Evolution

typeof (panel2@21) = 
  { title: Str, 
    width: NoneType}

typeof (panel2@22) = 
  { title: Str, 
    width: Int }

typeof (panel2@23) = 
  { title: Str, 
    width: Int, 
    height: int }



Types for dynamic languages: A case for Python 
Object-Based Types

typeof (Panel@21) = 
  { title: Str, 
    width: None }

typeof (Panel@21) = 
  { title: Str, 
    width: Int or None }

typeof (Panel@21) = 
  { title: Str, 
    width: Int or None, 
    height: Int or None 
or Abs }



Types for dynamic languages: A case for Python 

Constructor Polymorphism

Around 20% of constructors were polymorphic.

Most polymorphic constructors have a low degree (less than five)
    87% are polymorphic on attribute types
    6% differ on the attributes
    7% exhibit both.

80% of times the output of a constructor’s type was directly correlated with the 
arguments.



Types for dynamic languages: A case for Python 

Object Evolution

27% of all runtime objects evolved (33% of all classes)

Evolution is largely monotonic in nature 
    Addition of attributes (or)
    Types only change to their subtypes
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Types for higher level abstractions: TypeStates

Typestate-Oriented Programming [ONWARD - ‘09]

Associate a property with a class called as “state”.
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Types for higher level abstractions: TypeStates

Typestate-Oriented Programming [ONWARD - ‘09]

Associate a property with a class called as “state”.

Each “state” describes the valid behaviour.

Special methods can lead to transition in state, these are explicitly marked.

Type Checker is then used to identify operations that may be performed on an 

invalid state, for example, reading from a previously closed file.



Types for higher level abstractions: TypeStates
state File {

public final String filename;
}
state OpenFile extends File {

private CFilePtr filePtr;
public int read() { ... }
public void close() [OpenFile>>ClosedFile] { ... }

}
state ClosedFile extends File {

public void open() [ClosedFile>>OpenFile] { ... }
}



Types for higher level abstractions

When modeling types for higher level abstractions is the difficulty in mixing them 

with existing primitive types.

    Most Javascript code in the wild is probably impure and doing static analysis is 

futile. But react code is almost always pure, writing impure code is just unnatural. 

However, when it gets compiled down to Javascript it becomes harder and harder to 

analyze.



Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
  // Define state to track which component to display
  const [selected,setSelect] = useState('A');
  return (
    <div>
      <h1>Select a Component</h1>
      <button onClick={() => setSelect('A')}>Select A</button>
      <button onClick={() => setSelect('B')}>Select B</button>
      <button onClick={() => setSelect('C')}>Select C</button>
      <button onClick={() => setSelect('D')}>Select D</button>
      <div> <MyComponent someProp={selected}/> </div>
    </div>
  );
};
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State is a high level 
concept in React



Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
  // Define state to track which component to display
  const [selected,setSelect] = useState('A');
  return (
    <div>
      <h1>Select a Component</h1>
      <button onClick={() => setSelect('A')}>Select A</button>
      <button onClick={() => setSelect('B')}>Select B</button>
      <button onClick={() => setSelect('C')}>Select C</button>
      <button onClick={() => setSelect('D')}>Select D</button>
      <div> <MyComponent someProp={selected}/> </div>
    </div>
  );
};

State is a high level 
concept in React

getState

setState
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Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
  // Define state to track which component to display
  const [selected,setSelect] = useState('A');
  return (
    <div>
      <h1>Select a Component</h1>
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Types for higher level abstractions
import React, { useState } from 'react';

const MyComponent = (p) => {
  
  return (
     <div>
       Hello My name is {p}
     <div>
  )
};

Whenever any prop changes we re-render 
the entire component.



Types for higher level abstractions
function videoTab({ selectedVideo, videoList}) {
    let uniqueVideoList = new Set(videoList);
  
    return (
        <div>
            <ShowSelectedVideo selected={selectedVideo} />
            <DisplayVideoList videoList={uniqueVideoList}/>
        </div>
    )
}



React Forget Compiler [React India Conf - ‘24]
function VideoTab({ selectedVideo, videoList}) {
    let uniqueVideoList = new Set(videoList);
  
    return (
        <div>
            <ShowSelectedVideo selected={selectedVideo} />
            <DisplayVideoList videoList={uniqueVideoList}/>
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React Forget Compiler [React India Conf - ‘24]
function VideoTab({ selectedVideo, videoList}) {
    let uniqueVideoList = useMemo (() => new Set(videoList), [videoList]);
  
    return (
        <div>
            <ShowSelectedVideo selected={selectedVideo} />
            <DisplayVideoList videoList={uniqueVideoList}/>
        </div>
    )
}



More Possible Optimizations!!

A case for dependent/conditional types is react.
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          setData(new StringList()); setLoadSuccess(true);
        } 
    }, [...]);
    
    return (...)
}
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More Possible Optimizations!!

A case for dependent/conditional types is react.

An IR to reason about high level react components?

A way to model react states?

Empirical evaluation of slowdowns due to runtime checks

Improving GC behaviour?



Objects in dynamic languages exhibit a lot of different behaviours and typing under 

such constraints requires strong type systems.

Frameworks and programming abstractions can aid compilers infer high-level 

domain specific information that can be used to optimize code at lower levels.

Types are used to describe and enforce many different properties in a language, 

but describing type systems for dynamic languages is a non-trivial task.

Conclusion


