
Type Systems for Dynamic
Languages

PhD Seminar Presentation

Meetesh Kalpesh Mehta (23D0361)

Advisor: Dr Manas Thakur

Overview

- Introduction

- Classification of types

- Inference of types

- Strength of type systems

- Uses of type systems

- Optimization, safety

- Types for dynamic languages

- Types for higher level abstractions

What are Types?

What are Types?

Type rules can help prevent invalid
operations

What are Types?

What are Types?

Not all rules can be verified
during static analysis.

What are Types?

In languages like C/C++, types act as annotations that
allow the compiler to identify invalid code using type rules.

What are Types?

What are Types?

In Java, these
assignments are
always correct.

What are Types?

obj4 -> {Object, A}

What are Types?

obj4 -> {Object, A}

50% of time this code
is correct, other
times JVM prevents
execution of this code.

What are Types?

In languages like
Java, types are
values at runtime.
This allows the
type system to
provide
guarantees about
the system.

What are Types?

[Specifying Systems: The TLA+
Language and Tools for Hardware
and Software Engineers - ‘02]

What are Types?

Variable declaration
and initialization.

What are Types?

Valid steps that can be
taken at each point.

What are Types?

Type invariant

What are Types?
In languages like TLA+, types
are invariants on variables.

When implementing a
specification, the type
invariants may be asserted
statically or dynamically.

What are Types?

let a = 10;
a = (a, b) => a < b;
a = [1,3,2].sort(a);

What are Types?

let a = 10;
a = (a, b) => a < b;
a = [1,3,2].sort(a);

Int

Closure

list

let a = (a, b) => a < b;
let b = (a, b) => a < b;
let c = a + b; // What does it even mean to add two functions ?
console.log(c);
let d = c(1,2);

What are Types?

let a = (a, b) => a < b;
let b = (a, b) => a < b;
let c = a + b; // What does it even mean to add two functions ?
console.log(c);
let d = c(1,2);

What are Types?

c is a string!

let a = (a, b) => a < b;
let b = (a, b) => a < b;
let c = a + b; // What does it even mean to add two functions ?
console.log(c);
let d = c(1,2);

What are Types?

Runtime assertion fails!

let a = (a, b) => a < b;
let b = (a, b) => a < b;
let c = a + b; // What does it even mean to add two functions ?
console.log(c);
let d = c(1,2);

What are Types?

In languages like JavaScript, types are runtime values,
checked at runtime.

What are Types?
C/C++ ⇒ annotations@static

Java ⇒ annotations@static + values@runtime

TLA+ ⇒ invariants@const

JS ⇒ values@runtime

What are Types?
C/C++ ⇒ annotations@static

Java ⇒ annotations@static + values@runtime

TLA+ ⇒ invariants@const

JS ⇒ values@runtime

Tags

What are Types?
C/C++ ⇒ annotations@static

Java ⇒ annotations@static + values@runtime

TLA+ ⇒ invariants@const

JS ⇒ values@runtime

Tag-free variables ==> improved performance & complex GC/runtime

Tagged variable ==> slower performance & robust GC/runtime

What are Types?
C/C++ ⇒ annotations@static

Java ⇒ annotations@static + values@runtime

TLA+ ⇒ invariants@const

JS ⇒ values@runtime

Tag-free variables ==> improved performance & complex GC/runtime

Tagged variable ==> slower performance & robust GC/runtime

Overview

- Introduction

- Classification of types

- Inference of types

- Strength of type systems

- Uses of type systems

- Optimization, safety

- Types for dynamic languages

- Types for higher level abstractions

How are types created?

From existing types – Using language primitives, other declared types.

Completely new types – Behave like new primitives.

How are types created? Types from existing types

// Type String in Haskell
type String = [Char]

// One might view it as a typedef in C
typedef char* string;

How are types created? Types from existing types

// Type Distance described in terms of Type Point in Haskell
type Point = (Int , Int)
type Distance = Point -> Point -> Int

// One might view it as the following in C ++.
typedef struct Point {

int a,b;
}
typedef int (* Distance) (Point,Point);

How are types created? Types from existing types

// Type Distance described in terms of Type Point in Haskell
type Point = (Int , Int)
type Distance = Point -> Point -> Int

// One might view it as the following in C ++, but not really.
typedef struct Point {

int a,b;
}
typedef int (* Distance) (Point,Point);

How are types created? Types from existing types

// Type A and Type B in Haskell are synonyms
type A = (Int,Int)
type B = (Int,Int)

f :: A -> B
f (a,b) = (b,a)

g :: A -> Int
g (a,b) = a + b

// Executing function f and g
g (f (1 ,2))

How are types created? Types from existing types

// Type A and Type B in Haskell are synonyms
type Point1 = (Int,Int)
type Point2 = (Int,Int)

// In C they are not
typedef struct Point1 {

int a,b;
}

typedef struct Point2 {
int a,b;

}

How are types created? Types from existing types

Equality in Haskell for types declared using ‘type’ is structural.

Recursion is now allowed for such types.

// Invalid in Haskell
type Tree=(Int,[Tree])

// Haskell compiler does not infer recursion in types, instead the
programmer is responsible for explicitly marking it.

How are types created? Completely new types

// Type A and Type B in Haskell are synonyms
data Point1 = C1 Int Int
data Point2 = C2 Int Int

How are types created? Completely new types

// Type A and Type B in Haskell are synonyms
data Point1 = C1 Int Int
data Point2 = C2 Int Int

Constructor

Keyword

How are types created? Completely new types

// Type A and Type B in Haskell are synonyms
data Point1 = C1 Int Int
data Point2 = C2 Int Int

// Equivalent C code
typedef struct Point1 {

int a,b;
}

typedef struct Point2 {
int a,b;

}

Overview

- Introduction

- Classification of types

- Inference of types

- Strength of type systems

- Uses of type systems

- Optimization, safety

- Types for dynamic languages

- Types for higher level abstractions

Inference of types

letrec map f m = if (null m) then nil
 else cons (f (car m)) (map f (cdr m))

A Theory of Type Polymorphism in Programming [JCSS-1978]

Inference of types

letrec map f m = if (null m) then nil
 else cons (f (car m)) (map f (cdr m))

typeof (map) = (α → β) → α list → β list

Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
 else cons (f (car m)) (map f (cdr m))

Free identifiers ⇒ Not defined as an argument of current/parent lambdas.

Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
 else cons (f (car m)) (map f (cdr m))

Generic types of free identifiers

Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
 else cons (f (car m)) (map f (cdr m))

Substituting Type Variables

Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
 else cons (f (car m)) (map f (cdr m))

Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
 else cons (f (car m)) (map f (cdr m))

Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
 else cons (f (car m)) (map f (cdr m))

Modeling Types as a System of Linear Equations

letrec map f m = if (null m) then nil
 else cons (f (car m)) (map f (cdr m))

Modeling Types as a System of Linear Equations

If Robinson’s unification algorithm succeeds, typechecking OK,
otherwise fail.

// Example1: auto keyword in C++

std::vector <int> foo (int a) {
auto vec;
return vec;

}

// Example1: auto keyword in C++

std::vector <int> foo (int a) {
auto vec;
return vec;

}

// Example1: auto keyword in C++

std::vector <int> foo (int a) {
auto vec;
return vec;

}

// Example1: auto keyword in C++

std::vector <int> foo (int a) {
auto vec;
return vec;

}

// Example1: auto keyword in C++

std::vector <int> foo (int a) {
auto vec;
return vec;

}

TYPECHECK FAIL

‘auto’ specifies that the type of the variable that is being declared will be
automatically deduced from its initializer.

Some languages impose restrictions on their type inference systems.

// Example2: inference in TypeScript

function foo (a : number) : number [] {
let vec;

return vec;
}

Same example works fine in case of TypeScript!

// Example2: inference in TypeScript

function foo (a : number) : number [] {
let vec;
// Successful unification
return vec;

}

Same example works fine in case of TypeScript!

TYPECHECK OK

Limitations of this system

Tuple of size two as input argument

Return a tuple with reversed tuple
values.

Limitations of this system

Limitations of this system

Limitations of this system

Limitations of this system: Possible Solution

We could instantiate type variables.

Types that do not appear as part of any enclosing formal parameters are
allowed to be instantiated.

Limitations of this system: Possible Solution

Types that do not appear as part of any enclosing formal parameters are
allowed to be instantiated.

When f is an argument, even this fails.

Overview

- Introduction

- Classification of types

- Inference of types

- Strength of type systems

- Uses of type systems

- Optimization, safety

- Types for dynamic languages

- Types for higher level abstractions

Strength of Type Systems

Ideally we would want to allow as much program behaviour as
possible and still be able to typecheck the program.

A very restrictive type system makes it difficult to describe certain
kinds of programs.

A limited type system may also make performing type preserving
optimizations difficult.

Strength of Type Systems
let l = [1,“Hello”,3.14] as const

let m = reverse(...l)

let n : inference = m.first()

console.log(n + 33.3)

Strength of Type Systems
let l = [1,“Hello”,3.14] as const

let m = reverse(...l)

let n : inference = m.first()

console.log(n + 33.3)

[Int | String | Float]

[Float | String | Int]

[Float | String | Int]

floatAdd | StringAdd | IntAdd

Strength of Type Systems
let l = [1,“Hello”,3.14] as const

let m = reverse(...l)

let n : inference = m.first()

console.log(n + 33.3)

[Int, String, Float]

[Float, String, Int]

[Float]

Call floatAdd

Strength of Type Systems: Pattern Matching
type Reverse <T extends any []> =
 T extends [infer T1 , ...infer Ts]
 ? [... Reverse < Ts > , T1]
 : T;

declare function reverse<T extends any []>(... ts : T) : Reverse<T>;

Strength of Type Systems: Pattern Matching
type Reverse <T extends any []> =
 T extends [infer T1 , ...infer Ts]
 ? [... Reverse < Ts > , T1]
 : T;

declare function reverse<T extends any []>(... ts : T) : Reverse<T>;

A Type Variable T can be a any list.

Strength of Type Systems: Pattern Matching
type Reverse <T extends any []> =
 T extends [infer T1 , ...infer Ts]
 ? [... Reverse < Ts > , T1]
 : T;

declare function reverse<T extends any []>(...ts : T) : Reverse<T>;

Return type of reverse if Reverse<T>

Strength of Type Systems: Pattern Matching
type Reverse <T extends any []> =
 T extends [infer T1 , ...infer Ts]
 ? [... Reverse < Ts > , T1]
 : T;

declare function reverse<T extends any []>(...ts : T) : Reverse<T>;

Pattern matching

Strength of Type Systems: Pattern Matching
type Reverse <T extends any []> =
 T extends [infer T1 , ...infer Ts]
 ? [... Reverse < Ts > , T1]
 : T;

declare function reverse<T extends any []>(...ts : T) : Reverse<T>;

Pattern matching, with inferred type variables T1 and Ts

Even recursion is supported!!

Strength of Type Systems: Conditional Typing

type APIResult<T extends boolean> = T extends true ?
 ExtraInformation : BasicInformation;

function apiCall(extra: boolean) : ApiResult<typeof extra> {
 if (extra) { return new ExtraInformation(); }
 else { return new BasicInformation(); }
}

const extraInformation = apiCall(true); // ExtraInformation
const basicInformation = apiCall(false); // BasicInformation

Strength of Type Systems: Conditional Typing

type APIResult<T extends boolean> = T extends true ?
 ExtraInformation : BasicInformation;

function apiCall(extra: boolean) : ApiResult<typeof extra> {
 if (extra) { return new ExtraInformation(); }
 else { return new BasicInformation(); }
}

const extraInformation = apiCall(true); // ExtraInformation
const basicInformation = apiCall(false); // BasicInformation

Narrowing

Strength of Type Systems: Defunctionalization

Typed Closure Conversion [POPL ‘96]
Defunctionalization with Dependent Types [PLDI ‘24]

Defunctionalization is an important optimization, it helps separate a
functions body and data.

let val x = 1
 val y = 2
 val z = 3
 val f = λw. x + y + w
in
 f 100
end

Strength of Type Systems: Defunctionalization

Strength of Type Systems: Defunctionalization
let val x = 1
 val y = 2
 val z = 3
 val f = (λenv. λw. (#x env) + (#y env) + w) { x=x, y=y }
in
 f 100
end

Strength of Type Systems: Defunctionalization
let val x = 1
 val y = 2
 val z = 3
 val code = λenv. λw. (#x env) + (#y env) + w
 val env = { x=x, y=y }
 val f = (code, env)
in
 (#1 f) (#2 f) 100
end

Strength of Type Systems: Defunctionalization
let val x = 1
 val y = 2
 val z = 3
 val code = λenv. λw. (#x env) + (#y env) + w
 val env = { x=x, y=y }
 val f = (code, env)
in
 (#1 f) (#2 f) 100
end

τcode= τenv→τ1→τ2 τf= (τenv→τ1→τ2) X τenv

Strength of Type Systems: Existential Types
let val y = 1
in
 if true then
 λx. x + y
 else
 λz. z
end

Strength of Type Systems: Existential Types
let val y = 1
in
 if true then
 (λenv. λx. x + #y(e), {y=y})
 else
 (λenv. λz. z, {})
end

({y: int}→int→int) X {y:int}) ({}→int→int) X {})

Strength of Type Systems: Existential Types

Overview

- Introduction

- Classification of types

- Inference of types

- Strength of type systems

- Uses of type systems

- Optimization, safety

- Types for dynamic languages

- Types for higher level abstractions

Uses of Type Systems: Optimization [TIL- PLDI ‘96]
fun sub [α] (x :α array , i : int) =
 typecase α of
 int => intsub (x , i)
 | float => floatsub (x , i)
 | ptr (τ) => ptrsub (x , i)

fun sub [float] (x , 10)

floatsub (x , 10)

Intensional polymorphism, static analysis of types

Uses of Type Systems: GC [TIL- PLDI ‘96]

Locations of pointers and their liveness information can be encoded in the stack
frame directly.

So no tag’s need to be maintained for stack variables and registers.

Only tags for heap-allocated objects are required.

A LOT OF MODERN LANGUAGES LIKE JAVA USE THESE PRINCIPLES.

Uses of Type Systems: Safety
package p ;
public class Table {
 private Bucket [] buckets;
 public Object[] get (Object key) { return buckets; }
}

class Bucket {
 Bucket next ;
 Object key , val ;
}

Type-based Confinement [JFP - ‘06]

Uses of Type Systems: Safety

C1: Must not appear in the type of a public/prot field or the return type of a public/prot method.

C2 : A confined type must not be public.

C3 : Method invoked on an expression of confined type must either be defined in a
confined class or be anonymous.

C4 : Subtypes of a confined type must be confined.

C5 : Confined types can be widened only to other confined types.

C6 : Overriding must preserve anonymity of the methods.

A1: “this” is used only to select fields and be a receiver of other anonymous methods.

Uses of Type Systems: Safety
package p ;
public class Table {
 private Bucket [] buckets ;
 public Object[] get (Object key) { return buckets; }
}

conf class Bucket {
 Bucket next ;
 Object key , val ;
}

Uses of Type Systems: Safety
package p ;
public class Table {
 private Bucket [] buckets ;
 public Object[] get (Object key) { return buckets; }
}

conf class Bucket {
 Bucket next ;
 Object key , val ;
}

TYPECHECK FAIL

Overview

- Introduction

- Classification of types

- Inference of types

- Strength of type systems

- Uses of type systems

- Optimization, safety

- Types for dynamic languages

- Types for higher level abstractions

Types for dynamic languages: A case for R

Designing Types for R, Empirically [OOPSLA - ‘20]

● Implemented a tool called TypeTracer, that traces types for methods at
runtime.

● ContractR decorates function bodies with type assertions.

Types for dynamic languages: A case for R

● Even though types as data frames and complex classes are used regularly,
they found that the most popular types at runtime are vectors and matrices, etc.

● They found that 80% of functions are monomorphic or have only one
polymorphic argument.

Approximate missing things using
a missing field.

Types for dynamic languages: A case for Python

CLASS BASED TYPES OBJECT BASED TYPES

Every object evolution is a new
type.

What Types Are Needed for Typing Dynamic Objects? A Python-Based Empirical Study [APLAS - ‘23]

Types for dynamic languages: A case for Python
Constructor Polymorphism

typeof (panel1) =
 { title: Text,
 width: int,
 height: int }

typeof (panel2) =
 { title: Str,
 width: NoneType }

Types for dynamic languages: A case for Python
Class Based Types

Panel@C1: {
 title : Text,
 width : Int
}

Panel@C2: {
 title : Str,
 width : None or
 Int
 height: None or
 Int
}

Types for dynamic languages: A case for Python
Object Evolution

typeof (panel2@21) =
 { title: Str,
 width: NoneType}

typeof (panel2@22) =
 { title: Str,
 width: Int }

typeof (panel2@23) =
 { title: Str,
 width: Int,
 height: int }

Types for dynamic languages: A case for Python
Object-Based Types

typeof (Panel@21) =
 { title: Str,
 width: None }

typeof (Panel@21) =
 { title: Str,
 width: Int or None }

typeof (Panel@21) =
 { title: Str,
 width: Int or None,
 height: Int or None
or Abs }

Types for dynamic languages: A case for Python

Constructor Polymorphism

Around 20% of constructors were polymorphic.

Most polymorphic constructors have a low degree (less than five)
 87% are polymorphic on attribute types
 6% differ on the attributes
 7% exhibit both.

80% of times the output of a constructor’s type was directly correlated with the
arguments.

Types for dynamic languages: A case for Python

Object Evolution

27% of all runtime objects evolved (33% of all classes)

Evolution is largely monotonic in nature
 Addition of attributes (or)
 Types only change to their subtypes

Overview

- Introduction

- Classification of types

- Inference of types

- Strength of type systems

- Uses of type systems

- Optimization, safety

- Types for dynamic languages

- Types for higher level abstractions

Types for higher level abstractions: TypeStates

Typestate-Oriented Programming [ONWARD - ‘09]

Associate a property with a class called as “state”.

Types for higher level abstractions: TypeStates

Typestate-Oriented Programming [ONWARD - ‘09]

Associate a property with a class called as “state”.

Each “state” describes the valid behaviour.

Types for higher level abstractions: TypeStates

Typestate-Oriented Programming [ONWARD - ‘09]

Associate a property with a class called as “state”.

Each “state” describes the valid behaviour.

Special methods can lead to transition in state, these are explicitly marked.

Types for higher level abstractions: TypeStates

Typestate-Oriented Programming [ONWARD - ‘09]

Associate a property with a class called as “state”.

Each “state” describes the valid behaviour.

Special methods can lead to transition in state, these are explicitly marked.

Type Checker is then used to identify operations that may be performed on an

invalid state, for example, reading from a previously closed file.

Types for higher level abstractions: TypeStates
state File {

public final String filename;
}
state OpenFile extends File {

private CFilePtr filePtr;
public int read() { ... }
public void close() [OpenFile>>ClosedFile] { ... }

}
state ClosedFile extends File {

public void open() [ClosedFile>>OpenFile] { ... }
}

Types for higher level abstractions

When modeling types for higher level abstractions is the difficulty in mixing them

with existing primitive types.

 Most Javascript code in the wild is probably impure and doing static analysis is

futile. But react code is almost always pure, writing impure code is just unnatural.

However, when it gets compiled down to Javascript it becomes harder and harder to

analyze.

Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
 // Define state to track which component to display
 const [selected,setSelect] = useState('A');
 return (
 <div>
 <h1>Select a Component</h1>
 <button onClick={() => setSelect('A')}>Select A</button>
 <button onClick={() => setSelect('B')}>Select B</button>
 <button onClick={() => setSelect('C')}>Select C</button>
 <button onClick={() => setSelect('D')}>Select D</button>
 <div> <MyComponent someProp={selected}/> </div>
 </div>
);
};

Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
 // Define state to track which component to display
 const [selected,setSelect] = useState('A');
 return (
 <div>
 <h1>Select a Component</h1>
 <button onClick={() => setSelect('A')}>Select A</button>
 <button onClick={() => setSelect('B')}>Select B</button>
 <button onClick={() => setSelect('C')}>Select C</button>
 <button onClick={() => setSelect('D')}>Select D</button>
 <div> <MyComponent someProp={selected}/> </div>
 </div>
);
};

State is a high level
concept in React

Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
 // Define state to track which component to display
 const [selected,setSelect] = useState('A');
 return (
 <div>
 <h1>Select a Component</h1>
 <button onClick={() => setSelect('A')}>Select A</button>
 <button onClick={() => setSelect('B')}>Select B</button>
 <button onClick={() => setSelect('C')}>Select C</button>
 <button onClick={() => setSelect('D')}>Select D</button>
 <div> <MyComponent someProp={selected}/> </div>
 </div>
);
};

State is a high level
concept in React

getState

setState

Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
 // Define state to track which component to display
 const [selected,setSelect] = useState('A');
 return (
 <div>
 <h1>Select a Component</h1>
 <button onClick={() => setSelect('A')}>Select A</button>
 <button onClick={() => setSelect('B')}>Select B</button>
 <button onClick={() => setSelect('C')}>Select C</button>
 <button onClick={() => setSelect('D')}>Select D</button>
 <div> <MyComponent someProp={selected}/> </div>
 </div>
);
};

Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
 // Define state to track which component to display
 const [selected,setSelect] = useState('A');
 return (
 <div>
 <h1>Select a Component</h1>
 <button onClick={() => setSelect('A')}>Select A</button>
 <button onClick={() => setSelect('B')}>Select B</button>
 <button onClick={() => setSelect('C')}>Select C</button>
 <button onClick={() => setSelect('D')}>Select D</button>
 <div> <MyComponent someProp={selected}/> </div>
 </div>
);
};

Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
 // Define state to track which component to display
 const [selected,setSelect] = useState('A');
 return (
 <div>
 <h1>Select a Component</h1>
 <button onClick={() => setSelect('A')}>Select A</button>
 <button onClick={() => setSelect('B')}>Select B</button>
 <button onClick={() => setSelect('C')}>Select C</button>
 <button onClick={() => setSelect('D')}>Select D</button>
 <div> <MyComponent someProp={selected}/> </div>
 </div>
);
};

Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
 // Define state to track which component to display
 const [selected,setSelect] = useState('A');
 return (
 <div>
 <h1>Select a Component</h1>
 <button onClick={() => setSelect('A')}>Select A</button>
 <button onClick={() => setSelect('B')}>Select B</button>
 <button onClick={() => setSelect('C')}>Select C</button>
 <button onClick={() => setSelect('D')}>Select D</button>
 <div> <MyComponent someProp={selected}/> </div>
 </div>
);
};

Types for higher level abstractions
import React, { useState } from 'react';

const App = () => {
 // Define state to track which component to display
 const [selected,setSelect] = useState('A');
 return (
 <div>
 <h1>Select a Component</h1>
 <button onClick={() => setSelect('A')}>Select A</button>
 <button onClick={() => setSelect('B')}>Select B</button>
 <button onClick={() => setSelect('C')}>Select C</button>
 <button onClick={() => setSelect('D')}>Select D</button>
 <div> <MyComponent someProp={selected}/> </div>
 </div>
);
};

Types for higher level abstractions
import React, { useState } from 'react';

const MyComponent = (p) => {

 return (
 <div>
 Hello My name is {p}
 <div>
)
};

Whenever any prop changes we re-render
the entire component.

Types for higher level abstractions
function videoTab({ selectedVideo, videoList}) {
 let uniqueVideoList = new Set(videoList);

 return (
 <div>
 <ShowSelectedVideo selected={selectedVideo} />
 <DisplayVideoList videoList={uniqueVideoList}/>
 </div>
)
}

React Forget Compiler [React India Conf - ‘24]
function VideoTab({ selectedVideo, videoList}) {
 let uniqueVideoList = new Set(videoList);

 return (
 <div>
 <ShowSelectedVideo selected={selectedVideo} />
 <DisplayVideoList videoList={uniqueVideoList}/>
 </div>
)
}

VideoTab

DisplayVideoListShowSelectedVideo

selectedVideo

uniqueVideoList

Change any prop

React Forget Compiler [React India Conf - ‘24]
function VideoTab({ selectedVideo, videoList}) {
 let uniqueVideoList = new Set(videoList);

 return (
 <div>
 <ShowSelectedVideo selected={selectedVideo} />
 <DisplayVideoList videoList={uniqueVideoList}/>
 </div>
)
}

VideoTab

DisplayVideoListShowSelectedVideo

selectedVideo uniqueVideoList

Change any prop

React Forget Compiler [React India Conf - ‘24]
function VideoTab({ selectedVideo, videoList}) {
 let uniqueVideoList = useMemo (() => new Set(videoList), [videoList]);

 return (
 <div>
 <ShowSelectedVideo selected={selectedVideo} />
 <DisplayVideoList videoList={uniqueVideoList}/>
 </div>
)
}

More Possible Optimizations!!

A case for dependent/conditional types is react.

More Possible Optimizations?
function someFun({...}) {
 let [loadSuccess, setLoadSuccess] = useState(false);
 let [data, setData] = useState(undefined);
 const hotFunction = () => {
 // Operates heavily on data object
 }

 useEffect(() => {
 loadFromApi().then(() => {
 setData(new StringList()); setLoadSuccess(true);
 }
 }, [...]);

 return (...)
}

More Possible Optimizations?
function someFun({...}) {
 let [loadSuccess, setLoadSuccess] = useState(false);
 let [data, setData] = useState(undefined);
 const hotFunction = () => {
 // Operates heavily on data object
 }

 useEffect(() => {
 loadFromApi().then(() => {
 setData(new StringList()); setLoadSuccess(true);
 }
 }, [...]);

 return (...)
}

loadSuccess: bool

setLoadSuccess: udef

More Possible Optimizations?
function someFun({...}) {
 let [loadSuccess, setLoadSuccess] = useState(false);
 let [data, setData] = useState(undefined);
 const hotFunction = () => {
 // Operates heavily on data object
 }

 useEffect(() => {
 loadFromApi().then(() => {
 setData(new StringList()); setLoadSuccess(true);
 }
 }, [...]);

 return (...)
}

loadSuccess: bool

setLoadSuccess:

udef OR StringList

This doesn't help us much
in any optimization.
Things like null checks are
needed

More Possible Optimizations?
function someFun({...}) {
 let [loadSuccess, setLoadSuccess] = useState(false);
 let [data, setData] = useState(undefined);
 const hotFunction = () => {
 // Operates heavily on data object
 }

 useEffect(() => {
 loadFromApi().then(() => {
 setData(new StringList()); setLoadSuccess(true);
 }
 }, [...]);

 return (...)
}

loadSuccess: bool

setLoadSuccess:

loadSuccess ? StringList
: udef

This doesn't help us much
in any optimization.
Things like null checks are
needed

More Possible Optimizations!!

A case for dependent/conditional types is react.

An IR to reason about high level react components?

A way to model react states?

Empirical evaluation of slowdowns due to runtime checks

Improving GC behaviour?

Objects in dynamic languages exhibit a lot of different behaviours and typing under

such constraints requires strong type systems.

Frameworks and programming abstractions can aid compilers infer high-level

domain specific information that can be used to optimize code at lower levels.

Types are used to describe and enforce many different properties in a language,

but describing type systems for dynamic languages is a non-trivial task.

Conclusion

